BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31436994)

  • 1. From a Liquid to a Crystal without Going through a First-Order Phase Transition: Determining the Free Energy of Melting with Glassy Intermediates.
    Zhuang L; Wang R; Lindberg GE; Hu H; Li XZ; Wang F
    J Phys Chem B; 2019 Sep; 123(36):7740-7747. PubMed ID: 31436994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the melting temperature of ice-Ih with only electronic structure information as input.
    Pinnick ER; Erramilli S; Wang F
    J Chem Phys; 2012 Jul; 137(1):014510. PubMed ID: 22779668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid-liquid transition in supercooled water suggested by microsecond simulations.
    Li Y; Li J; Wang F
    Proc Natl Acad Sci U S A; 2013 Jul; 110(30):12209-12. PubMed ID: 23836647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface.
    García Fernández R; Abascal JL; Vega C
    J Chem Phys; 2006 Apr; 124(14):144506. PubMed ID: 16626213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase equilibrium of liquid water and hexagonal ice from enhanced sampling molecular dynamics simulations.
    Piaggi PM; Car R
    J Chem Phys; 2020 May; 152(20):204116. PubMed ID: 32486691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of ices at 0 K: a test of water models.
    Aragones JL; Noya EG; Abascal JL; Vega C
    J Chem Phys; 2007 Oct; 127(15):154518. PubMed ID: 17949184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melting points and thermal expansivities of proton-disordered hexagonal ice with several model potentials.
    Koyama Y; Tanaka H; Gao G; Zeng XC
    J Chem Phys; 2004 Oct; 121(16):7926-31. PubMed ID: 15485255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase.
    Aragones JL; Conde MM; Noya EG; Vega C
    Phys Chem Chem Phys; 2009 Jan; 11(3):543-55. PubMed ID: 19283272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heating- and pressure-induced transformations in amorphous and hexagonal ice: A computer simulation study using the TIP4P/2005 model.
    Engstler J; Giovambattista N
    J Chem Phys; 2017 Aug; 147(7):074505. PubMed ID: 28830166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ice Ih-Water Interfacial Free Energy of Simple Water Models with Full Electrostatic Interactions.
    Davidchack RL; Handel R; Anwar J; Brukhno AV
    J Chem Theory Comput; 2012 Jul; 8(7):2383-90. PubMed ID: 26588971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the phase diagram of water from direct coexistence simulations: the phase diagram of the TIP4P/2005 model revisited.
    Conde MM; Gonzalez MA; Abascal JL; Vega C
    J Chem Phys; 2013 Oct; 139(15):154505. PubMed ID: 24160525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melting temperature of ice Ih calculated from coexisting solid-liquid phases.
    Wang J; Yoo S; Bai J; Morris JR; Zeng XC
    J Chem Phys; 2005 Jul; 123(3):36101. PubMed ID: 16080767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing recent charge-on-spring type polarizable water models. I. Melting temperature and ice properties.
    Kiss PT; Bertsyk P; Baranyai A
    J Chem Phys; 2012 Nov; 137(19):194102. PubMed ID: 23181289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High precision determination of the melting points of water TIP4P/2005 and water TIP4P/Ice models by the direct coexistence technique.
    Conde MM; Rovere M; Gallo P
    J Chem Phys; 2017 Dec; 147(24):244506. PubMed ID: 29289125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum path integral simulation of isotope effects in the melting temperature of ice Ih.
    Ramírez R; Herrero CP
    J Chem Phys; 2010 Oct; 133(14):144511. PubMed ID: 20950021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melting points of water models: Current situation.
    Blazquez S; Vega C
    J Chem Phys; 2022 Jun; 156(21):216101. PubMed ID: 35676134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal growth investigations of ice∕water interfaces from molecular dynamics simulations: Profile functions and average properties.
    Razul MS; Kusalik PG
    J Chem Phys; 2011 Jan; 134(1):014710. PubMed ID: 21219023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homogeneous ice nucleation evaluated for several water models.
    Espinosa JR; Sanz E; Valeriani C; Vega C
    J Chem Phys; 2014 Nov; 141(18):18C529. PubMed ID: 25399194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free energy calculations for a flexible water model.
    Habershon S; Manolopoulos DE
    Phys Chem Chem Phys; 2011 Nov; 13(44):19714-27. PubMed ID: 21887423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic aspects of the thermostatted growth of ice from supercooled water in simulations.
    Weiss VC; Rullich M; Köhler C; Frauenheim T
    J Chem Phys; 2011 Jul; 135(3):034701. PubMed ID: 21787017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.