These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 3143735)

  • 1. Formation of membrane networks in vitro by kinesin-driven microtubule movement.
    Vale RD; Hotani H
    J Cell Biol; 1988 Dec; 107(6 Pt 1):2233-41. PubMed ID: 3143735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms.
    Waterman-Storer CM; Salmon ED
    Curr Biol; 1998 Jul; 8(14):798-806. PubMed ID: 9663388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radial extension of macrophage tubular lysosomes supported by kinesin.
    Hollenbeck PJ; Swanson JA
    Nature; 1990 Aug; 346(6287):864-6. PubMed ID: 1697403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directional instability of microtubule transport in the presence of kinesin and dynein, two opposite polarity motor proteins.
    Vale RD; Malik F; Brown D
    J Cell Biol; 1992 Dec; 119(6):1589-96. PubMed ID: 1469050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of Motor-Independent Membrane Remodeling Driven by Dynamic Microtubules.
    Rodríguez-García R; Volkov VA; Chen CY; Katrukha EA; Olieric N; Aher A; Grigoriev I; López MP; Steinmetz MO; Kapitein LC; Koenderink G; Dogterom M; Akhmanova A
    Curr Biol; 2020 Mar; 30(6):972-987.e12. PubMed ID: 32032506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro.
    Vale RD; Schnapp BJ; Mitchison T; Steuer E; Reese TS; Sheetz MP
    Cell; 1985 Dec; 43(3 Pt 2):623-32. PubMed ID: 2416467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of kinesin and other soluble factors in organelle movement along microtubules.
    Schroer TA; Schnapp BJ; Reese TS; Sheetz MP
    J Cell Biol; 1988 Nov; 107(5):1785-92. PubMed ID: 3141429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cultured cell extracts support organelle movement on microtubules in vitro.
    Dabora SL; Sheetz MP
    Cell Motil Cytoskeleton; 1988; 10(4):482-95. PubMed ID: 3145153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtubule motor-dependent formation of tubulovesicular networks from endoplasmic reticulum and Golgi membranes.
    McIlvain JM; Lamb C; Dabora S; Sheetz MP
    Methods Cell Biol; 1993; 39():227-36. PubMed ID: 8246799
    [No Abstract]   [Full Text] [Related]  

  • 10. Roles for microtubules and kinesin in membrane traffic between the endoplasmic reticulum and the Golgi complex.
    Lippincott-Schwartz J; Cole NB
    Biochem Soc Trans; 1995 Aug; 23(3):544-8. PubMed ID: 8566412
    [No Abstract]   [Full Text] [Related]  

  • 11. The role of microtubule polarity in the movement of kinesin and kinetochores.
    Mitchison TJ
    J Cell Sci Suppl; 1986; 5():121-8. PubMed ID: 3115997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein phosphatase 1 regulates the cytoplasmic dynein-driven formation of endoplasmic reticulum networks in vitro.
    Allan V
    J Cell Biol; 1995 Mar; 128(5):879-91. PubMed ID: 7876311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microtubule-based endoplasmic reticulum motility in Xenopus laevis: activation of membrane-associated kinesin during development.
    Lane JD; Allan VJ
    Mol Biol Cell; 1999 Jun; 10(6):1909-22. PubMed ID: 10359605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the microtubule movement produced by sea urchin egg kinesin.
    Porter ME; Scholey JM; Stemple DL; Vigers GP; Vale RD; Sheetz MP; McIntosh JR
    J Biol Chem; 1987 Feb; 262(6):2794-802. PubMed ID: 3102475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of kinesin-1 and cytoplasmic dynein in endoplasmic reticulum movement in VERO cells.
    Woźniak MJ; Bola B; Brownhill K; Yang YC; Levakova V; Allan VJ
    J Cell Sci; 2009 Jun; 122(Pt 12):1979-89. PubMed ID: 19454478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the gliding, fishtailing and circling motions of native microtubules.
    Weiss DG; Langford GM; Seitz-Tutter D; Maile W
    Acta Histochem Suppl; 1991; 41():81-105. PubMed ID: 1725829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for the involvement of microtubules, ER, and kinesin in the cortical rotation of fertilized frog eggs.
    Houliston E; Elinson RP
    J Cell Biol; 1991 Sep; 114(5):1017-28. PubMed ID: 1714912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vesicle movements and microtubule-based motors.
    Sheetz MP; Vale R; Schnapp B; Schroer T; Reese T
    J Cell Sci Suppl; 1986; 5():181-8. PubMed ID: 2443518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a MAP 2-like ATP-binding protein associated with axoplasmic vesicles that translocate on isolated microtubules.
    Gilbert SP; Sloboda RD
    J Cell Biol; 1986 Sep; 103(3):947-56. PubMed ID: 3091608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opposing Kinesin and Myosin-I Motors Drive Membrane Deformation and Tubulation along Engineered Cytoskeletal Networks.
    McIntosh BB; Pyrpassopoulos S; Holzbaur ELF; Ostap EM
    Curr Biol; 2018 Jan; 28(2):236-248.e5. PubMed ID: 29337076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.