These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31437481)

  • 1. TGF-β1 promotes hyaluronan synthesis by upregulating hyaluronan synthase 2 expression in human granulosa-lutein cells.
    Wang F; Chang HM; Yi Y; Li H; Leung PCK
    Cell Signal; 2019 Nov; 63():109392. PubMed ID: 31437481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TGF-β1 Increases GDNF Production by Upregulating the Expression of GDNF and Furin in Human Granulosa-Lutein Cells.
    Yin J; Chang HM; Yi Y; Yao Y; Leung PCK
    Cells; 2020 Jan; 9(1):. PubMed ID: 31936902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SNAIL Mediates TGF-β1-Induced Downregulation of Pentraxin 3 Expression in Human Granulosa Cells.
    Li H; Chang HM; Shi Z; Leung PCK
    Endocrinology; 2018 Apr; 159(4):1644-1657. PubMed ID: 29462303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connective tissue growth factor mediates bone morphogenetic protein 2-induced increase in hyaluronan production in luteinized human granulosa cells.
    Chang HM; Bai L; Zhu YM; Leung PCK
    Reprod Biol Endocrinol; 2022 Apr; 20(1):65. PubMed ID: 35395768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activin A promotes hyaluronan production and upregulates versican expression in human granulosa cells†.
    Tian S; Zhang H; Chang HM; Klausen C; Huang HF; Jin M; Leung PCK
    Biol Reprod; 2022 Aug; 107(2):458-473. PubMed ID: 35403677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TGF-β1 inhibits microvascular-like formation by decreasing VCAM1 and ICAM1 via the upregulation of SNAIL in human granulosa cells.
    Li H; Chang HM; Lin YM; Shi Z; Leung PCK
    Mol Cell Endocrinol; 2021 Sep; 535():111395. PubMed ID: 34265344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transforming growth factor-β1 up-regulates connexin43 expression in human granulosa cells.
    Chen YC; Chang HM; Cheng JC; Tsai HD; Wu CH; Leung PC
    Hum Reprod; 2015 Sep; 30(9):2190-201. PubMed ID: 26202915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BMP6 increases TGF-β1 production by up-regulating furin expression in human granulosa-lutein cells.
    Zhang XY; Chang HM; Zhu H; Liu RZ; Leung PCK
    Cell Signal; 2019 Mar; 55():109-118. PubMed ID: 30633987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TGF-β1 promotes vitamin D-induced prostaglandin E2 synthesis by upregulating vitamin D receptor expression in human granulosa-lutein cells.
    Wang F; Chang HM; Yi Y; Lin YM; Li H; Leung PCK
    Am J Physiol Endocrinol Metab; 2020 May; 318(5):E710-E722. PubMed ID: 31961707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ID3 mediates the TGF-β1-induced suppression of matrix metalloproteinase-1 in human granulosa cells.
    Li H; Chang HM; Shi Z; Leung PCK
    FEBS J; 2019 Nov; 286(21):4310-4327. PubMed ID: 31215762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential activation of noncanonical SMAD2/SMAD3 signaling by bone morphogenetic proteins causes disproportionate induction of hyaluronan production in immortalized human granulosa cells.
    Zhang H; Tian S; Klausen C; Zhu H; Liu R; Leung PC
    Mol Cell Endocrinol; 2016 Jun; 428():17-27. PubMed ID: 26992562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The p38 signaling pathway mediates the TGF-β1-induced increase in type I collagen deposition in human granulosa cells.
    Li H; Chang HM; Shi Z; Leung PCK
    FASEB J; 2020 Nov; 34(11):15591-15604. PubMed ID: 32996643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ALK4-SMAD2/3-SMAD4 signaling mediates the activin A-induced suppression of PTX3 in human granulosa-lutein cells.
    Liu C; Chang HM; Yi Y; Fang Y; Zhao F; Leung PCK; Yang X
    Mol Cell Endocrinol; 2019 Aug; 493():110485. PubMed ID: 31185247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TGF-β1 upregulates secreted protein acidic and rich in cysteine expression in human granulosa-lutein cells: a potential mechanism for the pathogenesis of ovarian hyperstimulation syndrome.
    Dang X; Fang L; Jia Q; Wu Z; Guo Y; Liu B; Cheng JC; Sun YP
    Cell Commun Signal; 2023 May; 21(1):101. PubMed ID: 37158892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth differentiation factor-11 downregulates steroidogenic acute regulatory protein expression through ALK5-mediated SMAD3 signaling pathway in human granulosa-lutein cells.
    Jia Q; Liu B; Dang X; Guo Y; Han X; Song T; Cheng JC; Fang L
    Reprod Biol Endocrinol; 2022 Feb; 20(1):34. PubMed ID: 35183204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TGF-β1 stimulates aromatase expression and estradiol production through SMAD2 and ERK1/2 signaling pathways in human granulosa-lutein cells.
    Cheng JC; Fang L; Yan Y; He J; Guo Y; Jia Q; Gao Y; Han X; Sun YP
    J Cell Physiol; 2021 Sep; 236(9):6619-6629. PubMed ID: 33512728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TGF-β1 upregulates the expression of hyaluronan synthase 2 and hyaluronan synthesis in culture models of equine articular chondrocytes.
    Ongchai S; Somnoo O; Kongdang P; Peansukmanee S; Tangyuenyong S
    J Vet Sci; 2018 Nov; 19(6):735-743. PubMed ID: 30041292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TGF-β1 Up-Regulates Connective Tissue Growth Factor Expression in Human Granulosa Cells through Smad and ERK1/2 Signaling Pathways.
    Cheng JC; Chang HM; Fang L; Sun YP; Leung PC
    PLoS One; 2015; 10(5):e0126532. PubMed ID: 25955392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aging fibroblasts resist phenotypic maturation because of impaired hyaluronan-dependent CD44/epidermal growth factor receptor signaling.
    Simpson RM; Wells A; Thomas D; Stephens P; Steadman R; Phillips A
    Am J Pathol; 2010 Mar; 176(3):1215-28. PubMed ID: 20093489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TGF-β1 induces VEGF expression in human granulosa-lutein cells: a potential mechanism for the pathogenesis of ovarian hyperstimulation syndrome.
    Fang L; Li Y; Wang S; Li Y; Chang HM; Yi Y; Yan Y; Thakur A; Leung PCK; Cheng JC; Sun YP
    Exp Mol Med; 2020 Mar; 52(3):450-460. PubMed ID: 32152452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.