These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 31437881)
1. Text Classification to Inform Suicide Risk Assessment in Electronic Health Records. Bittar A; Velupillai S; Roberts A; Dutta R Stud Health Technol Inform; 2019 Aug; 264():40-44. PubMed ID: 31437881 [TBL] [Abstract][Full Text] [Related]
2. Identifying features of risk periods for suicide attempts using document frequency and language use in electronic health records. Dutta R; Gkotsis G; Velupillai SU; Downs J; Roberts A; Stewart R; Hotopf M Front Psychiatry; 2023; 14():1217649. PubMed ID: 38152362 [TBL] [Abstract][Full Text] [Related]
3. Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. Carson NJ; Mullin B; Sanchez MJ; Lu F; Yang K; Menezes M; Cook BL PLoS One; 2019; 14(2):e0211116. PubMed ID: 30779800 [TBL] [Abstract][Full Text] [Related]
4. Natural language processing of clinical mental health notes may add predictive value to existing suicide risk models. Levis M; Leonard Westgate C; Gui J; Watts BV; Shiner B Psychol Med; 2021 Jun; 51(8):1382-1391. PubMed ID: 32063248 [TBL] [Abstract][Full Text] [Related]
5. Reviewing a Decade of Research Into Suicide and Related Behaviour Using the South London and Maudsley NHS Foundation Trust Clinical Record Interactive Search (CRIS) System. Bittar A; Velupillai S; Downs J; Sedgwick R; Dutta R Front Psychiatry; 2020; 11():553463. PubMed ID: 33329090 [TBL] [Abstract][Full Text] [Related]
6. Risk prediction using natural language processing of electronic mental health records in an inpatient forensic psychiatry setting. Le DV; Montgomery J; Kirkby KC; Scanlan J J Biomed Inform; 2018 Oct; 86():49-58. PubMed ID: 30118855 [TBL] [Abstract][Full Text] [Related]
7. Natural language processing and machine learning of electronic health records for prediction of first-time suicide attempts. Tsui FR; Shi L; Ruiz V; Ryan ND; Biernesser C; Iyengar S; Walsh CG; Brent DA JAMIA Open; 2021 Jan; 4(1):ooab011. PubMed ID: 33758800 [TBL] [Abstract][Full Text] [Related]
8. Combining clinical notes with structured electronic health records enhances the prediction of mental health crises. Garriga R; Buda TS; Guerreiro J; Omaña Iglesias J; Estella Aguerri I; Matić A Cell Rep Med; 2023 Nov; 4(11):101260. PubMed ID: 37913776 [TBL] [Abstract][Full Text] [Related]
9. Toward Automatic Risk Assessment to Support Suicide Prevention. Adamou M; Antoniou G; Greasidou E; Lagani V; Charonyktakis P; Tsamardinos I; Doyle M Crisis; 2019 Jul; 40(4):249-256. PubMed ID: 30474411 [No Abstract] [Full Text] [Related]
10. Psychiatric stressor recognition from clinical notes to reveal association with suicide. Zhang Y; Zhang OR; Li R; Flores A; Selek S; Zhang XY; Xu H Health Informatics J; 2019 Dec; 25(4):1846-1862. PubMed ID: 30328378 [TBL] [Abstract][Full Text] [Related]
11. Clinician-recalled quoted speech in electronic health records and risk of suicide attempt: a case-crossover study. Jayasinghe L; Bittar A; Dutta R; Stewart R BMJ Open; 2020 Apr; 10(4):e036186. PubMed ID: 32327481 [TBL] [Abstract][Full Text] [Related]
12. User-Centered Design of a Machine Learning Intervention for Suicide Risk Prediction in a Military Setting. Reale C; Novak LL; Robinson K; Simpson CL; Ribeiro JD; Franklin JC; Ripperger M; Walsh CG AMIA Annu Symp Proc; 2020; 2020():1050-1058. PubMed ID: 33936481 [TBL] [Abstract][Full Text] [Related]
13. Leveraging unstructured electronic medical record notes to derive population-specific suicide risk models. Levis M; Levy J; Dufort V; Gobbel GT; Watts BV; Shiner B Psychiatry Res; 2022 Sep; 315():114703. PubMed ID: 35841702 [TBL] [Abstract][Full Text] [Related]
14. Patient perspectives on acceptability of, and implementation preferences for, use of electronic health records and machine learning to identify suicide risk. Yarborough BJH; Stumbo SP Gen Hosp Psychiatry; 2021; 70():31-37. PubMed ID: 33711562 [TBL] [Abstract][Full Text] [Related]
15. Acronym Disambiguation in Spanish Electronic Health Narratives Using Machine Learning Techniques. Rubio-López I; Costumero R; Ambit H; Gonzalo-Martín C; Menasalvas E; Rodríguez González A Stud Health Technol Inform; 2017; 235():251-255. PubMed ID: 28423792 [TBL] [Abstract][Full Text] [Related]
16. Maximizing the use of social and behavioural information from secondary care mental health electronic health records. Goodday SM; Kormilitzin A; Vaci N; Liu Q; Cipriani A; Smith T; Nevado-Holgado A J Biomed Inform; 2020 Jul; 107():103429. PubMed ID: 32387393 [TBL] [Abstract][Full Text] [Related]
17. Clinical Text Data Categorization and Feature Extraction Using Medical-Fissure Algorithm and Neg-Seq Algorithm. Pagad NS; N P; Almuzaini KK; Maheshwari M; Gangodkar D; Shukla P; Alhassan M Comput Intell Neurosci; 2022; 2022():5759521. PubMed ID: 35295284 [TBL] [Abstract][Full Text] [Related]
18. Identifying and Predicting Intentional Self-Harm in Electronic Health Record Clinical Notes: Deep Learning Approach. Obeid JS; Dahne J; Christensen S; Howard S; Crawford T; Frey LJ; Stecker T; Bunnell BE JMIR Med Inform; 2020 Jul; 8(7):e17784. PubMed ID: 32729840 [TBL] [Abstract][Full Text] [Related]
19. Selection of Clinical Text Features for Classifying Suicide Attempts. Buckland RS; Hogan JW; Chen ES AMIA Annu Symp Proc; 2020; 2020():273-282. PubMed ID: 33936399 [TBL] [Abstract][Full Text] [Related]
20. Automation of penicillin adverse drug reaction categorisation and risk stratification with machine learning natural language processing. Inglis JM; Bacchi S; Troelnikov A; Smith W; Shakib S Int J Med Inform; 2021 Dec; 156():104611. PubMed ID: 34653809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]