These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 31437922)
1. Using Ensemble Machine Learning Methods for Predicting Risk of Readmission for Heart Failure. Mahajan SM; Ghani R Stud Health Technol Inform; 2019 Aug; 264():243-247. PubMed ID: 31437922 [TBL] [Abstract][Full Text] [Related]
2. Combining Structured and Unstructured Data for Predicting Risk of Readmission for Heart Failure Patients. Mahajan SM; Ghani R Stud Health Technol Inform; 2019 Aug; 264():238-242. PubMed ID: 31437921 [TBL] [Abstract][Full Text] [Related]
3. PREDICTIVE MODELING OF HOSPITAL READMISSION RATES USING ELECTRONIC MEDICAL RECORD-WIDE MACHINE LEARNING: A CASE-STUDY USING MOUNT SINAI HEART FAILURE COHORT. Shameer K; Johnson KW; Yahi A; Miotto R; Li LI; Ricks D; Jebakaran J; Kovatch P; Sengupta PP; Gelijns S; Moskovitz A; Darrow B; David DL; Kasarskis A; Tatonetti NP; Pinney S; Dudley JT Pac Symp Biocomput; 2017; 22():276-287. PubMed ID: 27896982 [TBL] [Abstract][Full Text] [Related]
4. Predicting Risk of 30-Day Readmissions Using Two Emerging Machine Learning Methods. Mahajan SM; Mahajan AS; King R; Negahban S Stud Health Technol Inform; 2018; 250():250-255. PubMed ID: 29857454 [TBL] [Abstract][Full Text] [Related]
5. A mixed-ensemble model for hospital readmission. Turgeman L; May JH Artif Intell Med; 2016 Sep; 72():72-82. PubMed ID: 27664509 [TBL] [Abstract][Full Text] [Related]
6. Predictive models for hospital readmission risk: A systematic review of methods. Artetxe A; Beristain A; Graña M Comput Methods Programs Biomed; 2018 Oct; 164():49-64. PubMed ID: 30195431 [TBL] [Abstract][Full Text] [Related]
7. Prediction of 30-Day All-Cause Readmissions in Patients Hospitalized for Heart Failure: Comparison of Machine Learning and Other Statistical Approaches. Frizzell JD; Liang L; Schulte PJ; Yancy CW; Heidenreich PA; Hernandez AF; Bhatt DL; Fonarow GC; Laskey WK JAMA Cardiol; 2017 Feb; 2(2):204-209. PubMed ID: 27784047 [TBL] [Abstract][Full Text] [Related]
8. Predicting the risk of acute care readmissions among rehabilitation inpatients: A machine learning approach. Xue Y; Liang H; Norbury J; Gillis R; Killingworth B J Biomed Inform; 2018 Oct; 86():143-148. PubMed ID: 30237014 [TBL] [Abstract][Full Text] [Related]
9. Automated data extraction and ensemble methods for predictive modeling of breast cancer outcomes after radiation therapy. Lindsay WD; Ahern CA; Tobias JS; Berlind CG; Chinniah C; Gabriel PE; Gee JC; Simone CB Med Phys; 2019 Feb; 46(2):1054-1063. PubMed ID: 30499597 [TBL] [Abstract][Full Text] [Related]
10. Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford ExercIse Testing (FIT) project. Alghamdi M; Al-Mallah M; Keteyian S; Brawner C; Ehrman J; Sakr S PLoS One; 2017; 12(7):e0179805. PubMed ID: 28738059 [TBL] [Abstract][Full Text] [Related]
11. The Promise of Machine Learning: When Will it be Delivered? Akbilgic O; Davis RL J Card Fail; 2019 Jun; 25(6):484-485. PubMed ID: 30978508 [TBL] [Abstract][Full Text] [Related]
12. Utilising Information of the Case Fee Catalogue to Enhance 30-Day Readmission Prediction in the German DRG System. Eggerth A; Hayn D; Veeranki S; Stieg J; Schreier G Stud Health Technol Inform; 2018; 255():40-44. PubMed ID: 30306903 [TBL] [Abstract][Full Text] [Related]
13. A Machine Learning Ensemble Classifier for Early Prediction of Diabetic Retinopathy. S K S; P A J Med Syst; 2017 Nov; 41(12):201. PubMed ID: 29124453 [TBL] [Abstract][Full Text] [Related]
14. Prediction Model Using Machine Learning for Mortality in Patients with Heart Failure. Negassa A; Ahmed S; Zolty R; Patel SR Am J Cardiol; 2021 Aug; 153():86-93. PubMed ID: 34246419 [TBL] [Abstract][Full Text] [Related]
15. Regional Differences in Predicting Risk of 30-Day Readmissions for Heart Failure. Mahajan SM; Mahajan AS; Negahban S Stud Health Technol Inform; 2018; 250():245-249. PubMed ID: 29857453 [TBL] [Abstract][Full Text] [Related]
16. Incremental value of clinical data beyond claims data in predicting 30-day outcomes after heart failure hospitalization. Hammill BG; Curtis LH; Fonarow GC; Heidenreich PA; Yancy CW; Peterson ED; Hernandez AF Circ Cardiovasc Qual Outcomes; 2011 Jan; 4(1):60-7. PubMed ID: 21139093 [TBL] [Abstract][Full Text] [Related]
17. Validation of the Readmission Risk Score in Heart Failure Patients at a Tertiary Hospital. Sudhakar S; Zhang W; Kuo YF; Alghrouz M; Barbajelata A; Sharma G J Card Fail; 2015 Nov; 21(11):885-91. PubMed ID: 26209002 [TBL] [Abstract][Full Text] [Related]
18. HR-BGCN : Predicting readmission for heart failure from electronic health records. Ma H; Li D; Zhao J; Li W; Fu J; Li C Artif Intell Med; 2024 Apr; 150():102829. PubMed ID: 38553167 [TBL] [Abstract][Full Text] [Related]
19. Predicting Hospital Readmission: A Joint Ensemble-Learning Model. Yu K; Xie X IEEE J Biomed Health Inform; 2020 Feb; 24(2):447-456. PubMed ID: 31484143 [TBL] [Abstract][Full Text] [Related]
20. Predicting 30-day Hospital Readmission with Publicly Available Administrative Database. A Conditional Logistic Regression Modeling Approach. Zhu K; Lou Z; Zhou J; Ballester N; Kong N; Parikh P Methods Inf Med; 2015; 54(6):560-7. PubMed ID: 26548400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]