These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 31437940)
1. Towards Automating Location-Specific Opioid Toxicosurveillance from Twitter via Data Science Methods. Sarker A; Gonzalez-Hernandez G; Perrone J Stud Health Technol Inform; 2019 Aug; 264():333-337. PubMed ID: 31437940 [TBL] [Abstract][Full Text] [Related]
2. Machine Learning and Natural Language Processing for Geolocation-Centric Monitoring and Characterization of Opioid-Related Social Media Chatter. Sarker A; Gonzalez-Hernandez G; Ruan Y; Perrone J JAMA Netw Open; 2019 Nov; 2(11):e1914672. PubMed ID: 31693125 [TBL] [Abstract][Full Text] [Related]
3. Solution to Detect, Classify, and Report Illicit Online Marketing and Sales of Controlled Substances via Twitter: Using Machine Learning and Web Forensics to Combat Digital Opioid Access. Mackey T; Kalyanam J; Klugman J; Kuzmenko E; Gupta R J Med Internet Res; 2018 Apr; 20(4):e10029. PubMed ID: 29613851 [TBL] [Abstract][Full Text] [Related]
4. Utilizing a multi-class classification approach to detect therapeutic and recreational misuse of opioids on Twitter. Fodeh SJ; Al-Garadi M; Elsankary O; Perrone J; Becker W; Sarker A Comput Biol Med; 2021 Feb; 129():104132. PubMed ID: 33290931 [TBL] [Abstract][Full Text] [Related]
5. Epidemiology from Tweets: Estimating Misuse of Prescription Opioids in the USA from Social Media. Chary M; Genes N; Giraud-Carrier C; Hanson C; Nelson LS; Manini AF J Med Toxicol; 2017 Dec; 13(4):278-286. PubMed ID: 28831738 [TBL] [Abstract][Full Text] [Related]
6. A Machine Learning Approach for the Detection and Characterization of Illicit Drug Dealers on Instagram: Model Evaluation Study. Li J; Xu Q; Shah N; Mackey TK J Med Internet Res; 2019 Jun; 21(6):e13803. PubMed ID: 31199298 [TBL] [Abstract][Full Text] [Related]
7. Promoting Reproducible Research for Characterizing Nonmedical Use of Medications Through Data Annotation: Description of a Twitter Corpus and Guidelines. O'Connor K; Sarker A; Perrone J; Gonzalez Hernandez G J Med Internet Res; 2020 Feb; 22(2):e15861. PubMed ID: 32130117 [TBL] [Abstract][Full Text] [Related]
8. Developing an Automatic System for Classifying Chatter About Health Services on Twitter: Case Study for Medicaid. Yang YC; Al-Garadi MA; Bremer W; Zhu JM; Grande D; Sarker A J Med Internet Res; 2021 May; 23(5):e26616. PubMed ID: 33938807 [TBL] [Abstract][Full Text] [Related]
9. Social Media Mining for Toxicovigilance: Automatic Monitoring of Prescription Medication Abuse from Twitter. Sarker A; O'Connor K; Ginn R; Scotch M; Smith K; Malone D; Gonzalez G Drug Saf; 2016 Mar; 39(3):231-40. PubMed ID: 26748505 [TBL] [Abstract][Full Text] [Related]
10. Exploring trends of nonmedical use of prescription drugs and polydrug abuse in the Twittersphere using unsupervised machine learning. Kalyanam J; Katsuki T; R G Lanckriet G; Mackey TK Addict Behav; 2017 Feb; 65():289-295. PubMed ID: 27568339 [TBL] [Abstract][Full Text] [Related]
11. Assessing Electronic Cigarette-Related Tweets for Sentiment and Content Using Supervised Machine Learning. Cole-Lewis H; Varghese A; Sanders A; Schwarz M; Pugatch J; Augustson E J Med Internet Res; 2015 Aug; 17(8):e208. PubMed ID: 26307512 [TBL] [Abstract][Full Text] [Related]
12. Using Twitter to Surveil the Opioid Epidemic in North Carolina: An Exploratory Study. Anwar M; Khoury D; Aldridge AP; Parker SJ; Conway KP JMIR Public Health Surveill; 2020 Jun; 6(2):e17574. PubMed ID: 32469322 [TBL] [Abstract][Full Text] [Related]
13. Detecting Potentially Harmful and Protective Suicide-Related Content on Twitter: Machine Learning Approach. Metzler H; Baginski H; Niederkrotenthaler T; Garcia D J Med Internet Res; 2022 Aug; 24(8):e34705. PubMed ID: 35976193 [TBL] [Abstract][Full Text] [Related]
14. Establishing a Link Between Prescription Drug Abuse and Illicit Online Pharmacies: Analysis of Twitter Data. Katsuki T; Mackey TK; Cuomo R J Med Internet Res; 2015 Dec; 17(12):e280. PubMed ID: 26677966 [TBL] [Abstract][Full Text] [Related]
15. Detecting illicit opioid content on Twitter. Tofighi B; Aphinyanaphongs Y; Marini C; Ghassemlou S; Nayebvali P; Metzger I; Raghunath A; Thomas S Drug Alcohol Rev; 2020 Mar; 39(3):205-208. PubMed ID: 32202005 [TBL] [Abstract][Full Text] [Related]
16. Characterizing the Discussion of Antibiotics in the Twittersphere: What is the Bigger Picture? Kendra RL; Karki S; Eickholt JL; Gandy L J Med Internet Res; 2015 Jun; 17(6):e154. PubMed ID: 26091775 [TBL] [Abstract][Full Text] [Related]
17. Text classification models for the automatic detection of nonmedical prescription medication use from social media. Al-Garadi MA; Yang YC; Cai H; Ruan Y; O'Connor K; Graciela GH; Perrone J; Sarker A BMC Med Inform Decis Mak; 2021 Jan; 21(1):27. PubMed ID: 33499852 [TBL] [Abstract][Full Text] [Related]
18. Public Perception Analysis of Tweets During the 2015 Measles Outbreak: Comparative Study Using Convolutional Neural Network Models. Du J; Tang L; Xiang Y; Zhi D; Xu J; Song HY; Tao C J Med Internet Res; 2018 Jul; 20(7):e236. PubMed ID: 29986843 [TBL] [Abstract][Full Text] [Related]
19. Discovering Cohorts of Pregnant Women From Social Media for Safety Surveillance and Analysis. Sarker A; Chandrashekar P; Magge A; Cai H; Klein A; Gonzalez G J Med Internet Res; 2017 Oct; 19(10):e361. PubMed ID: 29084707 [TBL] [Abstract][Full Text] [Related]
20. Drug Use in the Twittersphere: A Qualitative Contextual Analysis of Tweets About Prescription Drugs. Shutler L; Nelson LS; Portelli I; Blachford C; Perrone J J Addict Dis; 2015; 34(4):303-10. PubMed ID: 26364675 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]