These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 31437951)

  • 1. An Exploratory Study on Pseudo-Data Generation in Prescription and Adverse Drug Reaction Extraction.
    Tao C; Lee K; Filannino M; Uzuner Ö
    Stud Health Technol Inform; 2019 Aug; 264():388-392. PubMed ID: 31437951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FABLE: A Semi-Supervised Prescription Information Extraction System.
    Tao C; Filannino M; Uzuner Ö
    AMIA Annu Symp Proc; 2018; 2018():1534-1543. PubMed ID: 30815199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Portable automatic text classification for adverse drug reaction detection via multi-corpus training.
    Sarker A; Gonzalez G
    J Biomed Inform; 2015 Feb; 53():196-207. PubMed ID: 25451103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracting medications and associated adverse drug events using a natural language processing system combining knowledge base and deep learning.
    Chen L; Gu Y; Ji X; Sun Z; Li H; Gao Y; Huang Y
    J Am Med Inform Assoc; 2020 Jan; 27(1):56-64. PubMed ID: 31591641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supervised signal detection for adverse drug reactions in medication dispensing data.
    Hoang T; Liu J; Roughead E; Pratt N; Li J
    Comput Methods Programs Biomed; 2018 Jul; 161():25-38. PubMed ID: 29852965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linked open data-based framework for automatic biomedical ontology generation.
    Alobaidi M; Malik KM; Sabra S
    BMC Bioinformatics; 2018 Sep; 19(1):319. PubMed ID: 30200874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid Semantic Analysis for Mapping Adverse Drug Reaction Mentions in Tweets to Medical Terminology.
    Emadzadeh E; Sarker A; Nikfarjam A; Gonzalez G
    AMIA Annu Symp Proc; 2017; 2017():679-688. PubMed ID: 29854133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features.
    Nikfarjam A; Sarker A; O'Connor K; Ginn R; Gonzalez G
    J Am Med Inform Assoc; 2015 May; 22(3):671-81. PubMed ID: 25755127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prescription extraction using CRFs and word embeddings.
    Tao C; Filannino M; Uzuner Ö
    J Biomed Inform; 2017 Aug; 72():60-66. PubMed ID: 28684255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semi-Supervised Recurrent Neural Network for Adverse Drug Reaction mention extraction.
    Gupta S; Pawar S; Ramrakhiyani N; Palshikar GK; Varma V
    BMC Bioinformatics; 2018 Jun; 19(Suppl 8):212. PubMed ID: 29897321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distant Supervision with Transductive Learning for Adverse Drug Reaction Identification from Electronic Medical Records.
    Taewijit S; Theeramunkong T; Ikeda M
    J Healthc Eng; 2017; 2017():7575280. PubMed ID: 29090077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knowledge Author: facilitating user-driven, domain content development to support clinical information extraction.
    Scuba W; Tharp M; Mowery D; Tseytlin E; Liu Y; Drews FA; Chapman WW
    J Biomed Semantics; 2016 Jun; 7(1):42. PubMed ID: 27338146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic Extraction of Drug Adverse Effects from Product Characteristics (SPCs): A Text Versus Table Comparison.
    Lamy JB; Ugon A; Berthelot H
    Stud Health Technol Inform; 2016; 228():339-43. PubMed ID: 27577400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing knowledge representations by ontological relations.
    Denecke K
    Stud Health Technol Inform; 2008; 136():791-6. PubMed ID: 18487828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OntoADR a semantic resource describing adverse drug reactions to support searching, coding, and information retrieval.
    Souvignet J; Declerck G; Asfari H; Jaulent MC; Bousquet C
    J Biomed Inform; 2016 Oct; 63():100-107. PubMed ID: 27369567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural Language Processing and Its Implications for the Future of Medication Safety: A Narrative Review of Recent Advances and Challenges.
    Wong A; Plasek JM; Montecalvo SP; Zhou L
    Pharmacotherapy; 2018 Aug; 38(8):822-841. PubMed ID: 29884988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NLP techniques associated with the OpenGALEN ontology for semi-automatic textual extraction of medical knowledge: abstracting and mapping equivalent linguistic and logical constructs.
    do Amaral MB; Roberts A; Rector AL
    Proc AMIA Symp; 2000; ():76-80. PubMed ID: 11079848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical name extraction based on automatic training data generation and rich feature set.
    Yan S; Spangler WS; Chen Y
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(5):1218-33. PubMed ID: 24384710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing text categorization with semantic-enriched representation and training data augmentation.
    Lu X; Zheng B; Velivelli A; Zhai C
    J Am Med Inform Assoc; 2006; 13(5):526-35. PubMed ID: 16799127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large scale biomedical texts classification: a kNN and an ESA-based approaches.
    Dramé K; Mougin F; Diallo G
    J Biomed Semantics; 2016 Jun; 7():40. PubMed ID: 27312781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.