These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31438474)

  • 21. Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering.
    Cui Z; Nelson B; Peng Y; Li K; Pilla S; Li WJ; Turng LS; Shen C
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1674-81. PubMed ID: 24364976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of biphasic calcium phosphates on drug release and biological and mechanical properties of poly(epsilon-caprolactone) composite membranes.
    Kim HW; Knowles JC; Kim HE
    J Biomed Mater Res A; 2004 Sep; 70(3):467-79. PubMed ID: 15293321
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sodium alginate/collagen composite multiscale porous scaffolds containing poly(ε-caprolactone) microspheres fabricated based on additive manufacturing technology.
    Liu S; Huang D; Hu Y; Zhang J; Chen B; Zhang H; Dong X; Tong R; Li Y; Zhou W
    RSC Adv; 2020 Oct; 10(64):39241-39250. PubMed ID: 35518419
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of porous Calcium Phosphate (CaP) ceramics with aligned pores using ceramic/camphene-based co-extrusion.
    Choi WY; Kim HE; Moon YW; Shin KH; Koh YH
    Biomater Res; 2015; 19():16. PubMed ID: 26331085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity.
    Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydroxyapatite/poly(epsilon-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery.
    Kim HW; Knowles JC; Kim HE
    Biomaterials; 2004; 25(7-8):1279-87. PubMed ID: 14643602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bone-like apatite-forming ability and mechanical properties of poly(epsilon-caprolactone)/silica hybrid as a function of poly(epsilon-caprolactone) content.
    Rhee SH
    Biomaterials; 2004; 25(7-8):1167-75. PubMed ID: 14643590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study.
    Gómez-Lizárraga KK; Flores-Morales C; Del Prado-Audelo ML; Álvarez-Pérez MA; Piña-Barba MC; Escobedo C
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():326-335. PubMed ID: 28629025
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Uniformly-dispersed nanohydroxapatite-reinforced poly(ε-caprolactone) composite films for tendon tissue engineering application.
    Tong SY; Wang Z; Lim PN; Wang W; Thian ES
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):1149-1155. PubMed ID: 27772716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly porous polycaprolactone scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for bone regeneration.
    Gandolfi MG; Zamparini F; Degli Esposti M; Chiellini F; Fava F; Fabbri P; Taddei P; Prati C
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():341-361. PubMed ID: 31147007
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The synergic effect of polylactide fiber and calcium phosphate particle reinforcement in poly epsilon-caprolactone-based composite scaffolds.
    Guarino V; Ambrosio L
    Acta Biomater; 2008 Nov; 4(6):1778-87. PubMed ID: 18571487
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D Printed Multi-Functional Scaffolds Based on Poly(ε-Caprolactone) and Hydroxyapatite Composites.
    Liu F; Kang H; Liu Z; Jin S; Yan G; Sun Y; Li F; Zhan H; Gu Y
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dispersion of hydroxyapatite nanoparticles in solution and in polycaprolactone composite scaffolds.
    Goonasekera CS; Jack KS; Cooper-White JJ; Grøndahl L
    J Mater Chem B; 2016 Jan; 4(3):409-421. PubMed ID: 32263206
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three dimensional printed calcium phosphate and poly(caprolactone) composites with improved mechanical properties and preserved microstructure.
    Vella JB; Trombetta RP; Hoffman MD; Inzana J; Awad H; Benoit DSW
    J Biomed Mater Res A; 2018 Mar; 106(3):663-672. PubMed ID: 29044984
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone).
    Seyednejad H; Gawlitta D; Kuiper RV; de Bruin A; van Nostrum CF; Vermonden T; Dhert WJ; Hennink WE
    Biomaterials; 2012 Jun; 33(17):4309-18. PubMed ID: 22436798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation and characterization of bioactive calcium silicate and poly(epsilon-caprolactone) nanocomposite for bone tissue regeneration.
    Wei J; Heo SJ; Liu C; Kim DH; Kim SE; Hyun YT; Shin JW; Shin JW
    J Biomed Mater Res A; 2009 Sep; 90(3):702-12. PubMed ID: 18563819
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hierarchically porous nagelschmidtite bioceramic-silk scaffolds for bone tissue engineering.
    Xu M; Li H; Zhai D; Chang J; Chen S; Wu C
    J Mater Chem B; 2015 May; 3(18):3799-3809. PubMed ID: 32262854
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction.
    Dorj B; Won JE; Kim JH; Choi SJ; Shin US; Kim HW
    J Biomed Mater Res A; 2013 Jun; 101(6):1670-81. PubMed ID: 23184729
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioactive Cellulose Nanocrystal-Poly(ε-Caprolactone) Nanocomposites for Bone Tissue Engineering Applications.
    Hong JK; Cooke SL; Whittington AR; Roman M
    Front Bioeng Biotechnol; 2021; 9():605924. PubMed ID: 33718336
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of poly (ε-caprolactone) coating on the properties of three-dimensional printed porous structures.
    Zhou Z; Cunningham E; Lennon A; McCarthy HO; Buchanan F; Clarke SA; Dunne N
    J Mech Behav Biomed Mater; 2017 Jun; 70():68-83. PubMed ID: 27233445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.