BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 31438561)

  • 1. 3D Printing of Bioceramic Scaffolds-Barriers to the Clinical Translation: From Promise to Reality, and Future Perspectives.
    Lin K; Sheikh R; Romanazzo S; Roohani I
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31438561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printing of Bioceramics for Bone Tissue Engineering.
    Zafar MJ; Zhu D; Zhang Z
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31618857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Status of 3D Printing Technology for Preparing Bioceramic Materials].
    Zhang J; Li M; Tang B; Dong H; Yu Q
    Zhongguo Yi Liao Qi Xie Za Zhi; 2023 Nov; 47(6):651-658. PubMed ID: 38086723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Support-less ceramic 3D printing of bioceramic structures using a hydrogel bath.
    Raja N; Park H; Gal CW; Sung A; Choi YJ; Yun HS
    Biofabrication; 2023 Apr; 15(3):. PubMed ID: 36996843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism and application of 3D-printed degradable bioceramic scaffolds for bone repair.
    Lin H; Zhang L; Zhang Q; Wang Q; Wang X; Yan G
    Biomater Sci; 2023 Oct; 11(21):7034-7050. PubMed ID: 37782081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printed porous ceramic scaffolds for bone tissue engineering: a review.
    Wen Y; Xun S; Haoye M; Baichuan S; Peng C; Xuejian L; Kaihong Z; Xuan Y; Jiang P; Shibi L
    Biomater Sci; 2017 Aug; 5(9):1690-1698. PubMed ID: 28686244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D printing of sponge spicules-inspired flexible bioceramic-based scaffolds.
    Yang Z; Xue J; Li T; Zhai D; Yu X; Huan Z; Wu C
    Biofabrication; 2022 Apr; 14(3):. PubMed ID: 35417888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering.
    Jammalamadaka U; Tappa K
    J Funct Biomater; 2018 Mar; 9(1):. PubMed ID: 29494503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration.
    Luo Y; Zhai D; Huan Z; Zhu H; Xia L; Chang J; Wu C
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24377-83. PubMed ID: 26479454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Bioprinting Materials with Potential Application in Preprosthetic Surgery.
    Fahmy MD; Jazayeri HE; Razavi M; Masri R; Tayebi L
    J Prosthodont; 2016 Jun; 25(4):310-8. PubMed ID: 26855004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DLP fabrication of customized porous bioceramics with osteoinduction ability for remote isolation bone regeneration.
    Zhang B; Xing F; Chen L; Zhou C; Gui X; Su Z; Fan S; Zhou Z; Jiang Q; Zhao L; Liu M; Fan Y; Zhang X
    Biomater Adv; 2023 Feb; 145():213261. PubMed ID: 36577193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-Dimensional Printing of Large-Scale, High-Resolution Bioceramics with Micronano Inner Porosity and Customized Surface Characterization Design for Bone Regeneration.
    Zhang B; Gui X; Song P; Xu X; Guo L; Han Y; Wang L; Zhou C; Fan Y; Zhang X
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):8804-8815. PubMed ID: 35156367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of osteogenic capability of 3D-printed bioceramic scaffolds and granules with different porosities for clinical translation.
    Yue X; Zhao L; Yang J; Jiao X; Wu F; Zhang Y; Li Y; Qiu J; Ke X; Sun X; Yang X; Gou Z; Zhang L; Yang G
    Front Bioeng Biotechnol; 2023; 11():1260639. PubMed ID: 37840661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional printing of porous load-bearing bioceramic scaffolds.
    Mancuso E; Alharbi N; Bretcanu OA; Marshall M; Birch MA; McCaskie AW; Dalgarno KW
    Proc Inst Mech Eng H; 2017 Jun; 231(6):575-585. PubMed ID: 28056710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printing of Mg-substituted wollastonite reinforcing diopside porous bioceramics with enhanced mechanical and biological performances.
    He D; Zhuang C; Xu S; Ke X; Yang X; Zhang L; Yang G; Chen X; Mou X; Liu A; Gou Z
    Bioact Mater; 2016 Sep; 1(1):85-92. PubMed ID: 29744398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale 3D Bioprinting for Osseous Tissue Manufacturing.
    Wang Y; Gao M; Wang D; Sun L; Webster TJ
    Int J Nanomedicine; 2020; 15():215-226. PubMed ID: 32021175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone Tissue Engineering through 3D Bioprinting of Bioceramic Scaffolds: A Review and Update.
    Khalaf AT; Wei Y; Wan J; Zhu J; Peng Y; Abdul Kadir SY; Zainol J; Oglah Z; Cheng L; Shi Z
    Life (Basel); 2022 Jun; 12(6):. PubMed ID: 35743934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional bio-printing and bone tissue engineering: technical innovations and potential applications in maxillofacial reconstructive surgery.
    Salah M; Tayebi L; Moharamzadeh K; Naini FB
    Maxillofac Plast Reconstr Surg; 2020 Dec; 42(1):18. PubMed ID: 32548078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.