These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31438616)

  • 1. The Effect of Polyol Composition on the Structural and Magnetic Properties of Magnetite Nanoparticles for Magnetic Particle Hyperthermia.
    Kotoulas A; Dendrinou-Samara C; Angelakeris M; Kalogirou O
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31438616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the modifiers in polyol method on magnetically induced hyperthermia and biocompatibility of ultrafine magnetite nanoparticles.
    Radoń A; Włodarczyk A; Sieroń Ł; Rost-Roszkowska M; Chajec Ł; Łukowiec D; Ciuraszkiewicz A; Gębara P; Wacławek S; Kolano-Burian A
    Sci Rep; 2023 May; 13(1):7860. PubMed ID: 37188707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles.
    Shaterabadi Z; Nabiyouni G; Soleymani M
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111274. PubMed ID: 32919638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal and magnetic properties of chitosan-iron oxide nanoparticles.
    Soares PI; Machado D; Laia C; Pereira LC; Coutinho JT; Ferreira IM; Novo CM; Borges JP
    Carbohydr Polym; 2016 Sep; 149():382-90. PubMed ID: 27261762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Core-Shell Structures of Magnetic Ferrite Nanoparticles for High Hyperthermia Performance.
    Darwish MSA; Kim H; Lee H; Ryu C; Young Lee J; Yoon J
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32455690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coercivity Determines Magnetic Particle Heating.
    Starsich FHL; Eberhardt C; Boss A; Hirt AM; Pratsinis SE
    Adv Healthc Mater; 2018 Oct; 7(19):e1800287. PubMed ID: 30088699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure Differentiation of Hydrophilic Brass Nanoparticles Using a Polyol Toolbox.
    Antonoglou O; Founta E; Karagkounis V; Pavlidou E; Litsardakis G; Mourdikoudis S; Thanh NTK; Dendrinou-Samara C
    Front Chem; 2019; 7():817. PubMed ID: 31850309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring the magnetic properties of cobalt ferrite nanoparticles using the polyol process.
    Bibani M; Breitwieser R; Aubert A; Loyau V; Mercone S; Ammar S; Mammeri F
    Beilstein J Nanotechnol; 2019; 10():1166-1176. PubMed ID: 31293854
    [No Abstract]   [Full Text] [Related]  

  • 9. Stable Iron Oxide Nanoflowers with Exceptional Magnetic Heating Efficiency: Simple and Fast Polyol Synthesis.
    Storozhuk L; Besenhard MO; Mourdikoudis S; LaGrow AP; Lees MR; Tung LD; Gavriilidis A; Thanh NTK
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45870-45880. PubMed ID: 34541850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal and magnetic properties of iron oxide colloids: influence of surfactants.
    Soares PI; Lochte F; Echeverria C; Pereira LC; Coutinho JT; Ferreira IM; Novo CM; Borges JP
    Nanotechnology; 2015 Oct; 26(42):425704. PubMed ID: 26421876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural, magnetic and hyperthermia properties and their correlation in cobalt-doped magnetite nanoparticles.
    Phong LTH; Manh DH; Nam PH; Lam VD; Khuyen BX; Tung BS; Bach TN; Tung DK; Phuc NX; Hung TV; Mai TL; Phan TL; Phan MH
    RSC Adv; 2021 Dec; 12(2):698-707. PubMed ID: 35425141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and heating effect of iron/iron oxide composite and iron oxide nanoparticles.
    Zeng Q; Baker I; Loudis JA; Liao YF; Hoopes PJ
    Proc SPIE Int Soc Opt Eng; 2007 Feb; 6440():64400H. PubMed ID: 25301983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hysteresis losses and specific absorption rate measurements in magnetic nanoparticles for hyperthermia applications.
    Coïsson M; Barrera G; Celegato F; Martino L; Kane SN; Raghuvanshi S; Vinai F; Tiberto P
    Biochim Biophys Acta Gen Subj; 2017 Jun; 1861(6):1545-1558. PubMed ID: 27986628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring the Magnetic and Structural Properties of Manganese/Zinc Doped Iron Oxide Nanoparticles through Microwaves-Assisted Polyol Synthesis.
    Porru M; Morales MDP; Gallo-Cordova A; Espinosa A; Moros M; Brero F; Mariani M; Lascialfari A; Ovejero JG
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe
    Li Q; Kartikowati CW; Horie S; Ogi T; Iwaki T; Okuyama K
    Sci Rep; 2017 Aug; 7(1):9894. PubMed ID: 28855564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and Modelling Analysis of the Hyperthermia Properties of Iron Oxide Nanocubes.
    Ferrero R; Barrera G; Celegato F; Vicentini M; Sözeri H; Yıldız N; Atila Dinçer C; Coïsson M; Manzin A; Tiberto P
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperthermia, Cytotoxicity, and Cellular Uptake Properties of Manganese and Zinc Ferrite Magnetic Nanoparticles Synthesized by a Polyol-Mediated Process.
    Iacovita C; Florea A; Scorus L; Pall E; Dudric R; Moldovan AI; Stiufiuc R; Tetean R; Lucaciu CM
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31635415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.
    Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ferrimagnetic nanocrystal assemblies as versatile magnetic particle hyperthermia mediators.
    Sakellari D; Brintakis K; Kostopoulou A; Myrovali E; Simeonidis K; Lappas A; Angelakeris M
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():187-93. PubMed ID: 26478302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering magnetic hyperthermia properties of compositionally and morphologically modulated FeNi nanoparticles using first-order reversal curve analysis.
    Salati A; Ramazani A; Almasi Kashi M
    Nanotechnology; 2019 Jan; 30(2):025707. PubMed ID: 30387441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.