BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 31438688)

  • 1. Platinum, gold, and silver standards of intermolecular interaction energy calculations.
    Kodrycka M; Patkowski K
    J Chem Phys; 2019 Aug; 151(7):070901. PubMed ID: 31438688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving "Silver-Standard" Benchmark Interaction Energies with Bond Functions.
    Dutta NN; Patkowski K
    J Chem Theory Comput; 2018 Jun; 14(6):3053-3070. PubMed ID: 29772176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmark theoretical study of the π-π binding energy in the benzene dimer.
    Miliordos E; Aprà E; Xantheas SS
    J Phys Chem A; 2014 Sep; 118(35):7568-78. PubMed ID: 24761749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward a less costly but accurate calculation of the CCSD(T)/CBS noncovalent interaction energy.
    Chen JL; Sun T; Wang YB; Wang W
    J Comput Chem; 2020 May; 41(13):1252-1260. PubMed ID: 32045021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple coupled-cluster singles and doubles method with perturbative inclusion of triples and explicitly correlated geminals: The CCSD(T)R12 model.
    Valeev EF; Daniel Crawford T
    J Chem Phys; 2008 Jun; 128(24):244113. PubMed ID: 18601323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basis set dependence of higher-order correlation effects in π-type interactions.
    Carrell EJ; Thorne CM; Tschumper GS
    J Chem Phys; 2012 Jan; 136(1):014103. PubMed ID: 22239765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The curious case of DMSO: A CCSD(T)/CBS(aQ56+d) benchmark and DFT study.
    Olive LN; Dornshuld EV; Webster CE
    J Chem Phys; 2021 Sep; 155(11):114304. PubMed ID: 34551533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a W4-F12 approach: Can explicitly correlated and orbital-based ab initio CCSD(T) limits be reconciled?
    Sylvetsky N; Peterson KA; Karton A; Martin JM
    J Chem Phys; 2016 Jun; 144(21):214101. PubMed ID: 27276939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prototypical π-π dimers re-examined by means of high-level CCSDT(Q) composite ab initio methods.
    Karton A; Martin JML
    J Chem Phys; 2021 Mar; 154(12):124117. PubMed ID: 33810692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the accuracy of explicitly correlated coupled-cluster interaction energies--have orbital results been beaten yet?
    Patkowski K
    J Chem Phys; 2012 Jul; 137(3):034103. PubMed ID: 22830679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approaching the Basis Set Limit of CCSD(T) Energies for Large Molecules with Local Natural Orbital Coupled-Cluster Methods.
    Nagy PR; Kállay M
    J Chem Theory Comput; 2019 Oct; 15(10):5275-5298. PubMed ID: 31465219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Explicitly Correlated Methods for Computing High-Accuracy Benchmark Energies for Noncovalent Interactions.
    Sirianni DA; Burns LA; Sherrill CD
    J Chem Theory Comput; 2017 Jan; 13(1):86-99. PubMed ID: 28068770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-complete-basis-set extrapolation of conventional and explicitly correlated coupled-cluster energies: can the convergence to the CBS limit be diagnosed?
    Varandas AJC
    Phys Chem Chem Phys; 2021 Apr; 23(14):8717-8730. PubMed ID: 33876031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Symmetric and asymmetric triple excitation corrections for the orbital-optimized coupled-cluster doubles method: improving upon CCSD(T) and CCSD(T)(Λ): preliminary application.
    Bozkaya U; Schaefer HF
    J Chem Phys; 2012 May; 136(20):204114. PubMed ID: 22667547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliable predictions of the thermochemistry of boron-nitrogen hydrogen storage compounds: BxNxHy, x = 2, 3.
    Matus MH; Anderson KD; Camaioni DM; Autrey ST; Dixon DA
    J Phys Chem A; 2007 May; 111(20):4411-21. PubMed ID: 17444621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Describing Noncovalent Interactions beyond the Common Approximations: How Accurate Is the "Gold Standard," CCSD(T) at the Complete Basis Set Limit?
    Řezáč J; Hobza P
    J Chem Theory Comput; 2013 May; 9(5):2151-5. PubMed ID: 26583708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate ab initio predictions of ionization energies and heats of formation for the 2-propyl, phenyl, and benzyl radicals.
    Lau KC; Ng CY
    J Chem Phys; 2006 Jan; 124(4):044323. PubMed ID: 16460178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmark theoretical study on the dissociation energy of chlorine.
    Csontos J; Kállay M
    J Phys Chem A; 2011 Jul; 115(26):7765-72. PubMed ID: 21604724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explicit correlation and basis set superposition error: the structure and energy of carbon dioxide dimer.
    McMahon JD; Lane JR
    J Chem Phys; 2011 Oct; 135(15):154309. PubMed ID: 22029315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.