These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
921 related articles for article (PubMed ID: 31438806)
1. Genipin-crosslinked polyvinyl alcohol/silk fibroin/nano-hydroxyapatite hydrogel for fabrication of artificial cornea scaffolds-a novel approach to corneal tissue engineering. Zhou H; Wang Z; Cao H; Hu H; Luo Z; Yang X; Cui M; Zhou L J Biomater Sci Polym Ed; 2019 Dec; 30(17):1604-1619. PubMed ID: 31438806 [TBL] [Abstract][Full Text] [Related]
2. Fabrication and characterization of hydroxypropyl guar-poly (vinyl alcohol)-nano hydroxyapatite composite hydrogels for bone tissue engineering. Parameswaran-Thankam A; Al-Anbaky Q; Al-Karakooly Z; RanguMagar AB; Chhetri BP; Ali N; Ghosh A J Biomater Sci Polym Ed; 2018 Dec; 29(17):2083-2105. PubMed ID: 29962278 [TBL] [Abstract][Full Text] [Related]
3. Porous nano-hydroxyapatite/poly(vinyl alcohol) composite hydrogel as artificial cornea fringe: characterization and evaluation in vitro. Xu F; Li Y; Deng Y; Xiong J J Biomater Sci Polym Ed; 2008; 19(4):431-9. PubMed ID: 18318956 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of protease XIV-loaded microspheres for cell spreading in silk fibroin hydrogels. Xiao W; Zhang J; Qu X; Chen K; Gao H; He J; Ma T; Li B; Liao X J Mater Sci Mater Med; 2020 Nov; 31(12):128. PubMed ID: 33247786 [TBL] [Abstract][Full Text] [Related]
5. [Porous polyvinyl alcohol hydrogel composite prepared and studied initially for biocompatibility]. Wu JQ; Liu Y; Yang TF; Mu YH; Guo T; Li YB Sichuan Da Xue Xue Bao Yi Xue Ban; 2007 Jul; 38(4):705-8, 724. PubMed ID: 17718447 [TBL] [Abstract][Full Text] [Related]
6. Preparation and in vivo investigation of artificial cornea made of nano-hydroxyapatite/poly (vinyl alcohol) hydrogel composite. Fenglan X; Yubao L; Xiaoming Y; Hongbing L; Li Z J Mater Sci Mater Med; 2007 Apr; 18(4):635-40. PubMed ID: 17546425 [TBL] [Abstract][Full Text] [Related]
7. Tunable mechanical properties of Mo Allur Subramanian S; Oh S; Mariadoss AVA; Chae S; Dhandapani S; Parasuraman PS; Song SY; Woo C; Dong X; Choi JY; Kim SJ Int J Biol Macromol; 2022 Jun; 210():196-207. PubMed ID: 35513108 [TBL] [Abstract][Full Text] [Related]
8. Genipin-crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application. Zhang K; Qian Y; Wang H; Fan L; Huang C; Yin A; Mo X J Biomed Mater Res A; 2010 Dec; 95(3):870-81. PubMed ID: 20824649 [TBL] [Abstract][Full Text] [Related]
9. Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering. Lu HT; Lu TW; Chen CH; Mi FL Int J Biol Macromol; 2019 May; 128():973-984. PubMed ID: 30738901 [TBL] [Abstract][Full Text] [Related]
10. Porous PVA/SA/HA hydrogels fabricated by dual-crosslinking method for bone tissue engineering. Xu M; Qin M; Zhang X; Zhang X; Li J; Hu Y; Chen W; Huang D J Biomater Sci Polym Ed; 2020 Apr; 31(6):816-831. PubMed ID: 31971484 [TBL] [Abstract][Full Text] [Related]
11. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering. Kim JH; Kim DK; Lee OJ; Ju HW; Lee JM; Moon BM; Park HJ; Kim DW; Lee JH; Park CH Int J Biol Macromol; 2016 Jan; 82():160-7. PubMed ID: 26257379 [TBL] [Abstract][Full Text] [Related]
12. Formulation and characterization of silk sericin-PVA scaffold crosslinked with genipin. Aramwit P; Siritientong T; Kanokpanont S; Srichana T Int J Biol Macromol; 2010 Dec; 47(5):668-75. PubMed ID: 20804781 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and characterization of injectable thermosensitive hydrogel based on Pluronic-grafted silk fibroin copolymer containing hydroxyapatite nanoparticles as potential for bone tissue engineering. Daneshvar A; Farokhi M; Bonakdar S; Vossoughi M Int J Biol Macromol; 2024 Oct; 277(Pt 4):134412. PubMed ID: 39097043 [TBL] [Abstract][Full Text] [Related]
14. Injectable eggshell-derived hydroxyapatite-incorporated fibroin-alginate composite hydrogel for bone tissue engineering. Chuysinuan P; Nooeaid P; Thanyacharoen T; Techasakul S; Pavasant P; Kanjanamekanant K Int J Biol Macromol; 2021 Dec; 193(Pt A):799-808. PubMed ID: 34743940 [TBL] [Abstract][Full Text] [Related]
15. Tissue engineering of human knee meniscus using functionalized and reinforced silk-polyvinyl alcohol composite three-dimensional scaffolds: Understanding the in vitro and in vivo behavior. Pillai MM; Gopinathan J; Senthil Kumar R; Sathish Kumar G; Shanthakumari S; Sahanand KS; Bhattacharyya A; Selvakumar R J Biomed Mater Res A; 2018 Jun; 106(6):1722-1731. PubMed ID: 29460414 [TBL] [Abstract][Full Text] [Related]
16. Preparation and characterization of nano-hydroxyapatite/silk fibroin porous scaffolds. Liu L; Liu J; Wang M; Min S; Cai Y; Zhu L; Yao J J Biomater Sci Polym Ed; 2008; 19(3):325-38. PubMed ID: 18325234 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and characterization of microstructure-controllable COL-HA-PVA hydrogels for cartilage repair. Xie J; Wang W; Zhao R; Lu W; Chen L; Su W; Zeng M; Hu Y J Mater Sci Mater Med; 2021 Aug; 32(9):100. PubMed ID: 34406511 [TBL] [Abstract][Full Text] [Related]
18. Silk fibroin/carboxymethyl chitosan hydrogel with tunable biomechanical properties has application potential as cartilage scaffold. Li T; Song X; Weng C; Wang X; Gu L; Gong X; Wei Q; Duan X; Yang L; Chen C Int J Biol Macromol; 2019 Sep; 137():382-391. PubMed ID: 31271796 [TBL] [Abstract][Full Text] [Related]
19. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering. Shao W; He J; Sang F; Ding B; Chen L; Cui S; Li K; Han Q; Tan W Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():342-51. PubMed ID: 26478319 [TBL] [Abstract][Full Text] [Related]
20. Biomaterials from ultrasonication-induced silk fibroin-hyaluronic acid hydrogels. Hu X; Lu Q; Sun L; Cebe P; Wang X; Zhang X; Kaplan DL Biomacromolecules; 2010 Nov; 11(11):3178-88. PubMed ID: 20942397 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]