These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31438830)

  • 1. A Drug Decision Support System for Developing a Successful Drug Candidate Using Machine Learning Techniques.
    Onay A; Onay M
    Curr Comput Aided Drug Des; 2020; 16(4):407-419. PubMed ID: 31438830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of nervous system withdrawn and approved drugs with ToxPrint features via machine learning strategies.
    Onay A; Onay M; Abul O
    Comput Methods Programs Biomed; 2017 Apr; 142():9-19. PubMed ID: 28325450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A big data approach with artificial neural network and molecular similarity for chemical data mining and endocrine disruption prediction.
    Paulose R; Jegatheesan K; Balakrishnan GS
    Indian J Pharmacol; 2018; 50(4):169-176. PubMed ID: 30505052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PTML Modeling for Alzheimer's Disease: Design and Prediction of Virtual Multi-Target Inhibitors of GSK3B, HDAC1, and HDAC6.
    Kleandrova VV; Speck-Planche A
    Curr Top Med Chem; 2020; 20(19):1661-1676. PubMed ID: 32515311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Deep Learning With Multiple Machine Learning Methods and Metrics Using Diverse Drug Discovery Data Sets.
    Korotcov A; Tkachenko V; Russo DP; Ekins S
    Mol Pharm; 2017 Dec; 14(12):4462-4475. PubMed ID: 29096442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of machine learning approaches for novel drug discovery.
    Lima AN; Philot EA; Trossini GH; Scott LP; Maltarollo VG; Honorio KM
    Expert Opin Drug Discov; 2016; 11(3):225-39. PubMed ID: 26814169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Study of Applications of Machine Learning Based Classification Methods for Virtual Screening of Lead Molecules.
    Vyas R; Bapat S; Jain E; Tambe SS; Karthikeyan M; Kulkarni BD
    Comb Chem High Throughput Screen; 2015; 18(7):658-72. PubMed ID: 26138573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology.
    Hudson IL
    Methods Mol Biol; 2021; 2190():167-184. PubMed ID: 32804365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting machine learning for end-to-end drug discovery and development.
    Ekins S; Puhl AC; Zorn KM; Lane TR; Russo DP; Klein JJ; Hickey AJ; Clark AM
    Nat Mater; 2019 May; 18(5):435-441. PubMed ID: 31000803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study on the molecular descriptors for predicting drug-likeness of small molecules.
    Mishra H; Singh N; Lahiri T; Misra K
    Bioinformation; 2009 Jun; 3(9):384-8. PubMed ID: 19707563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioactive Molecule Prediction Using Extreme Gradient Boosting.
    Babajide Mustapha I; Saeed F
    Molecules; 2016 Jul; 21(8):. PubMed ID: 27483216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new data mining scheme using artificial neural networks.
    Kamruzzaman SM; Jehad Sarkar AM
    Sensors (Basel); 2011; 11(5):4622-47. PubMed ID: 22163866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery.
    Yang X; Wang Y; Byrne R; Schneider G; Yang S
    Chem Rev; 2019 Sep; 119(18):10520-10594. PubMed ID: 31294972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilizing graph machine learning within drug discovery and development.
    Gaudelet T; Day B; Jamasb AR; Soman J; Regep C; Liu G; Hayter JBR; Vickers R; Roberts C; Tang J; Roblin D; Blundell TL; Bronstein MM; Taylor-King JP
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34013350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Orthosteric and Allosteric Regulations on Cannabinoid Receptors Using Supervised Machine Learning Classifiers.
    Bian Y; Jing Y; Wang L; Ma S; Jun JJ; Xie XQ
    Mol Pharm; 2019 Jun; 16(6):2605-2615. PubMed ID: 31013097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification.
    Byvatov E; Fechner U; Sadowski J; Schneider G
    J Chem Inf Comput Sci; 2003; 43(6):1882-9. PubMed ID: 14632437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining a gravitational search algorithm, particle swarm optimization, and fuzzy rules to improve the classification performance of a feed-forward neural network.
    Huang ML; Chou YC
    Comput Methods Programs Biomed; 2019 Oct; 180():105016. PubMed ID: 31442736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel method for predicting kidney stone type using ensemble learning.
    Kazemi Y; Mirroshandel SA
    Artif Intell Med; 2018 Jan; 84():117-126. PubMed ID: 29241659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Knowledge mining from clinical datasets using rough sets and backpropagation neural network.
    Nahato KB; Harichandran KN; Arputharaj K
    Comput Math Methods Med; 2015; 2015():460189. PubMed ID: 25821508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning in Drug Discovery.
    Gawehn E; Hiss JA; Schneider G
    Mol Inform; 2016 Jan; 35(1):3-14. PubMed ID: 27491648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.