BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31438848)

  • 1. Influence of batch effect correction methods on drug induced differential gene expression profiles.
    Zhou W; Koudijs KKM; Böhringer S
    BMC Bioinformatics; 2019 Aug; 20(1):437. PubMed ID: 31438848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review of Drug Repositioning Based Chemical-induced Cell Line Expression Data.
    Wang F; Lei X; Wu FX
    Curr Med Chem; 2020; 27(32):5340-5350. PubMed ID: 30381060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistically controlled identification of differentially expressed genes in one-to-one cell line comparisons of the CMAP database for drug repositioning.
    He J; Yan H; Cai H; Li X; Guan Q; Zheng W; Chen R; Liu H; Song K; Guo Z; Wang X
    J Transl Med; 2017 Sep; 15(1):198. PubMed ID: 28962576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying Gene Signatures for Cancer Drug Repositioning Based on Sample Clustering.
    Wang F; Ding Y; Lei X; Liao B; Wu FX
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):953-965. PubMed ID: 32845842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic Data Mining and Repurposing for Computational Drug Discovery.
    Wang Y; Yella J; Jegga AG
    Methods Mol Biol; 2019; 1903():73-95. PubMed ID: 30547437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate Drug Repositioning through Non-tissue-Specific Core Signatures from Cancer Transcriptomes.
    Xu C; Ai D; Shi D; Suo S; Chen X; Yan Y; Cao Y; Zhang R; Sun N; Chen W; McDermott J; Zhang S; Zeng Y; Han JJ
    Cell Rep; 2018 Oct; 25(2):523-535.e5. PubMed ID: 30304690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DMAP: a connectivity map database to enable identification of novel drug repositioning candidates.
    Huang H; Nguyen T; Ibrahim S; Shantharam S; Yue Z; Chen JY
    BMC Bioinformatics; 2015; 16 Suppl 13(Suppl 13):S4. PubMed ID: 26423722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DrugSig: A resource for computational drug repositioning utilizing gene expression signatures.
    Wu H; Huang J; Zhong Y; Huang Q
    PLoS One; 2017; 12(5):e0177743. PubMed ID: 28562632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PS4DR: a multimodal workflow for identification and prioritization of drugs based on pathway signatures.
    Emon MA; Domingo-Fernández D; Hoyt CT; Hofmann-Apitius M
    BMC Bioinformatics; 2020 Jun; 21(1):231. PubMed ID: 32503412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ksRepo: a generalized platform for computational drug repositioning.
    Brown AS; Kong SW; Kohane IS; Patel CJ
    BMC Bioinformatics; 2016 Feb; 17():78. PubMed ID: 26860211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of connectivity map and computational approaches in pharmacogenomics.
    Musa A; Ghoraie LS; Zhang SD; Glazko G; Yli-Harja O; Dehmer M; Haibe-Kains B; Emmert-Streib F
    Brief Bioinform; 2018 May; 19(3):506-523. PubMed ID: 28069634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human Protein Complex-Based Drug Signatures for Personalized Cancer Medicine.
    Wang F; Ding Y; Lei X; Liao B; Wu FX
    IEEE J Biomed Health Inform; 2021 Nov; 25(11):4079-4088. PubMed ID: 34665747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network-based inference methods for drug repositioning.
    Chen H; Zhang H; Zhang Z; Cao Y; Tang W
    Comput Math Methods Med; 2015; 2015():130620. PubMed ID: 25969690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Prognosis-Related Gene Expression Signature and Connectivity Map for Personalized Drug Repositioning in Multiple Myeloma.
    Zhu FX; He YC; Zhang JY; Wang HF; Zhong C; Wang XT
    Med Sci Monit; 2019 May; 25():3247-3255. PubMed ID: 31048671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug Repositioning for Cancer Therapy Based on Large-Scale Drug-Induced Transcriptional Signatures.
    Lee H; Kang S; Kim W
    PLoS One; 2016; 11(3):e0150460. PubMed ID: 26954019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-target drug repositioning by bipartite block-wise sparse multi-task learning.
    Li L; He X; Borgwardt K
    BMC Syst Biol; 2018 Apr; 12(Suppl 4):55. PubMed ID: 29745839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive evaluation of connectivity methods for L1000 data.
    Lin K; Li L; Dai Y; Wang H; Teng S; Bao X; Lu ZJ; Wang D
    Brief Bioinform; 2020 Dec; 21(6):2194-2205. PubMed ID: 31774912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrative approach using real-world data to identify alternative therapeutic uses of existing drugs.
    Hosomi K; Fujimoto M; Ushio K; Mao L; Kato J; Takada M
    PLoS One; 2018; 13(10):e0204648. PubMed ID: 30300381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A survey of optimal strategy for signature-based drug repositioning and an application to liver cancer.
    Yang C; Zhang H; Chen M; Wang S; Qian R; Zhang L; Huang X; Wang J; Liu Z; Qin W; Wang C; Hang H; Wang H
    Elife; 2022 Feb; 11():. PubMed ID: 35191375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating LINCS Data to Evaluate Cancer Transcriptome Modifying Potential of Small-molecule Compounds for Drug Repositioning.
    Zhao Y; Liu Y; Bai H
    Comb Chem High Throughput Screen; 2021; 24(9):1340-1350. PubMed ID: 33109034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.