These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31439058)

  • 1. Electron-Excited X-ray Microanalysis by Energy Dispersive Spectrometry at 50: Analytical Accuracy, Precision, Trace Sensitivity, and Quantitative Compositional Mapping.
    Newbury DE; Ritchie NWM
    Microsc Microanal; 2019 Oct; 25(5):1075-1105. PubMed ID: 31439058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of Trace Constituents by Electron-Excited X-Ray Microanalysis with Energy-Dispersive Spectrometry.
    Newbury DE; Ritchie NW
    Microsc Microanal; 2016 Jun; 22(3):520-35. PubMed ID: 27329308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS).
    Newbury DE; Ritchie NW
    J Mater Sci; 2015; 50(2):493-518. PubMed ID: 26346887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Barriers to Quantitative Electron Probe X-Ray Microanalysis for Low Voltage Scanning Electron Microscopy.
    Newbury DE
    J Res Natl Inst Stand Technol; 2002; 107(6):605-19. PubMed ID: 27446755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative?
    Newbury DE; Ritchie NW
    Scanning; 2013; 35(3):141-68. PubMed ID: 22886950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron-Excited X-Ray Microanalysis at Low Beam Energy: Almost Always an Adventure!
    Newbury DE; Ritchie NW
    Microsc Microanal; 2016 Aug; 22(4):735-53. PubMed ID: 27515566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mistakes encountered during automatic peak identification of minor and trace constituents in electron-excited energy dispersive X-ray microanalysis.
    Newbury DE
    Scanning; 2009; 31(3):91-101. PubMed ID: 19533682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Iterative Qualitative-Quantitative Sequential Analysis Strategy for Electron-Excited X-ray Microanalysis with Energy Dispersive Spectrometry: Finding the Unexpected Needles in the Peak Overlap Haystack.
    Newbury DE; Ritchie NWM
    Microsc Microanal; 2018 Aug; 24(4):350-373. PubMed ID: 30175703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Electron-Excited X-Ray Microanalysis of Borides, Carbides, Nitrides, Oxides, and Fluorides with Scanning Electron Microscopy/Silicon Drift Detector Energy-Dispersive Spectrometry (SEM/SDD-EDS) and NIST DTSA-II.
    Newbury DE; Ritchie NW
    Microsc Microanal; 2015 Oct; 21(5):1327-40. PubMed ID: 26365439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Standardless Quantitative Electron-Excited X-ray Microanalysis by Energy-Dispersive Spectrometry: What Is Its Proper Role?
    Newbury DE
    Microsc Microanal; 1998 Nov; 4(6):585-597. PubMed ID: 10087281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy-Dispersive X-Ray Spectrum Simulation with NIST DTSA-II: Comparing Simulated and Measured Electron-Excited Spectra.
    Newbury DE; Ritchie NWM
    Microsc Microanal; 2022 Sep; ():1-12. PubMed ID: 36052846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Electron-Excited X-ray Microanalysis With Low-Energy L-shell X-ray Peaks Measured With Energy-Dispersive Spectrometry.
    Newbury DE; Ritchie NWM
    Microsc Microanal; 2021 Sep; ():1-34. PubMed ID: 34474694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The new X-ray mapping: X-ray spectrum imaging above 100 kHz output count rate with the silicon drift detector.
    Newbury DE
    Microsc Microanal; 2006 Feb; 12(1):26-35. PubMed ID: 17481339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron-excited energy dispersive X-ray spectrometry at high speed and at high resolution: silicon drift detectors and microcalorimeters.
    Newbury DE
    Microsc Microanal; 2006 Dec; 12(6):527-37. PubMed ID: 19830945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mistakes encountered during automatic peak identification in low beam energy X-ray microanalysis.
    Newbury DE
    Scanning; 2007; 29(4):137-51. PubMed ID: 17676629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multipoint Background Analysis: Gaining Precision and Accuracy in Microprobe Trace Element Analysis.
    Allaz JM; Williams ML; Jercinovic MJ; Goemann K; Donovan J
    Microsc Microanal; 2019 Feb; 25(1):30-46. PubMed ID: 30744721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-Ray Microanalysis in the Variable Pressure (Environmental) Scanning Electron Microscope.
    Newbury DE
    J Res Natl Inst Stand Technol; 2002; 107(6):567-603. PubMed ID: 27446754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulating electron-excited energy dispersive X-ray spectra with the NIST DTSA-II open-source software platform.
    Newbury DE; Ritchie NWM
    MRS Adv; 2022; 7(31):. PubMed ID: 36619829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Celebrating 40 years of energy dispersive X-ray spectrometry in electron probe microanalysis: a historic and nostalgic look back into the beginnings.
    Keil K; Fitzgerald R; Heinrich KF
    Microsc Microanal; 2009 Dec; 15(6):476-83. PubMed ID: 19804655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can X-ray spectrum imaging replace backscattered electrons for compositional contrast in the scanning electron microscope?
    Newbury DE; Ritchie NW
    Scanning; 2011; 33(3):174-92. PubMed ID: 21638289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.