These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

537 related articles for article (PubMed ID: 31439587)

  • 1. PARP Inhibition Suppresses GR-MYCN-CDK5-RB1-E2F1 Signaling and Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer.
    Liu B; Li L; Yang G; Geng C; Luo Y; Wu W; Manyam GC; Korentzelos D; Park S; Tang Z; Wu C; Dong Z; Sigouros M; Sboner A; Beltran H; Chen Y; Corn PG; Tetzlaff MT; Troncoso P; Broom B; Thompson TC
    Clin Cancer Res; 2019 Nov; 25(22):6839-6851. PubMed ID: 31439587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting the MYCN-PARP-DNA Damage Response Pathway in Neuroendocrine Prostate Cancer.
    Zhang W; Liu B; Wu W; Li L; Broom BM; Basourakos SP; Korentzelos D; Luan Y; Wang J; Yang G; Park S; Azad AK; Cao X; Kim J; Corn PG; Logothetis CJ; Aparicio AM; Chinnaiyan AM; Navone N; Troncoso P; Thompson TC
    Clin Cancer Res; 2018 Feb; 24(3):696-707. PubMed ID: 29138344
    [No Abstract]   [Full Text] [Related]  

  • 3. LncRNA-p21 alters the antiandrogen enzalutamide-induced prostate cancer neuroendocrine differentiation via modulating the EZH2/STAT3 signaling.
    Luo J; Wang K; Yeh S; Sun Y; Liang L; Xiao Y; Xu W; Niu Y; Cheng L; Maity SN; Jiang R; Chang C
    Nat Commun; 2019 Jun; 10(1):2571. PubMed ID: 31189930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PARP and CDK4/6 Inhibitor Combination Therapy Induces Apoptosis and Suppresses Neuroendocrine Differentiation in Prostate Cancer.
    Wu C; Peng S; Pilié PG; Geng C; Park S; Manyam GC; Lu Y; Yang G; Tang Z; Kondraganti S; Wang D; Hudgens CW; Ledesma DA; Marques-Piubelli ML; Torres-Cabala CA; Curry JL; Troncoso P; Corn PG; Broom BM; Thompson TC
    Mol Cancer Ther; 2021 Sep; 20(9):1680-1691. PubMed ID: 34158347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-Myc promotes therapeutic resistance development of neuroendocrine prostate cancer by differentially regulating miR-421/ATM pathway.
    Yin Y; Xu L; Chang Y; Zeng T; Chen X; Wang A; Groth J; Foo WC; Liang C; Hu H; Huang J
    Mol Cancer; 2019 Jan; 18(1):11. PubMed ID: 30657058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting DNA methylation and B7-H3 in RB1-deficient and neuroendocrine prostate cancer.
    Yamada Y; Venkadakrishnan VB; Mizuno K; Bakht M; Ku SY; Garcia MM; Beltran H
    Sci Transl Med; 2023 Nov; 15(722):eadf6732. PubMed ID: 37967200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-Myc Induces an EZH2-Mediated Transcriptional Program Driving Neuroendocrine Prostate Cancer.
    Dardenne E; Beltran H; Benelli M; Gayvert K; Berger A; Puca L; Cyrta J; Sboner A; Noorzad Z; MacDonald T; Cheung C; Yuen KS; Gao D; Chen Y; Eilers M; Mosquera JM; Robinson BD; Elemento O; Rubin MA; Demichelis F; Rickman DS
    Cancer Cell; 2016 Oct; 30(4):563-577. PubMed ID: 27728805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting PKLR/MYCN/ROMO1 signaling suppresses neuroendocrine differentiation of castration-resistant prostate cancer.
    Chen WY; Thuy Dung PV; Yeh HL; Chen WH; Jiang KC; Li HR; Chen ZQ; Hsiao M; Huang J; Wen YC; Liu YN
    Redox Biol; 2023 Jun; 62():102686. PubMed ID: 36963289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination AZD5363 with Enzalutamide Significantly Delays Enzalutamide-resistant Prostate Cancer in Preclinical Models.
    Toren P; Kim S; Cordonnier T; Crafter C; Davies BR; Fazli L; Gleave ME; Zoubeidi A
    Eur Urol; 2015 Jun; 67(6):986-990. PubMed ID: 25151012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA determinants of neuroendocrine differentiation in metastatic castration-resistant prostate cancer.
    Bhagirath D; Liston M; Patel N; Akoto T; Lui B; Yang TL; To DM; Majid S; Dahiya R; Tabatabai ZL; Saini S
    Oncogene; 2020 Dec; 39(49):7209-7223. PubMed ID: 33037409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MUC1-C regulates lineage plasticity driving progression to neuroendocrine prostate cancer.
    Yasumizu Y; Rajabi H; Jin C; Hata T; Pitroda S; Long MD; Hagiwara M; Li W; Hu Q; Liu S; Yamashita N; Fushimi A; Kui L; Samur M; Yamamoto M; Zhang Y; Zhang N; Hong D; Maeda T; Kosaka T; Wong KK; Oya M; Kufe D
    Nat Commun; 2020 Jan; 11(1):338. PubMed ID: 31953400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective targeting of PARP-2 inhibits androgen receptor signaling and prostate cancer growth through disruption of FOXA1 function.
    Gui B; Gui F; Takai T; Feng C; Bai X; Fazli L; Dong X; Liu S; Zhang X; Zhang W; Kibel AS; Jia L
    Proc Natl Acad Sci U S A; 2019 Jul; 116(29):14573-14582. PubMed ID: 31266892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Addition of PSMA ADC to enzalutamide therapy significantly improves survival in in vivo model of castration resistant prostate cancer.
    DiPippo VA; Nguyen HM; Brown LG; Olson WC; Vessella RL; Corey E
    Prostate; 2016 Feb; 76(3):325-34. PubMed ID: 26585210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Androgen receptor inhibitor-induced "BRCAness" and PARP inhibition are synthetically lethal for castration-resistant prostate cancer.
    Li L; Karanika S; Yang G; Wang J; Park S; Broom BM; Manyam GC; Wu W; Luo Y; Basourakos S; Song JH; Gallick GE; Karantanos T; Korentzelos D; Azad AK; Kim J; Corn PG; Aparicio AM; Logothetis CJ; Troncoso P; Heffernan T; Toniatti C; Lee HS; Lee JS; Zuo X; Chang W; Yin J; Thompson TC
    Sci Signal; 2017 May; 10(480):. PubMed ID: 28536297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preclinical Study using Malat1 Small Interfering RNA or Androgen Receptor Splicing Variant 7 Degradation Enhancer ASC-J9
    Wang R; Sun Y; Li L; Niu Y; Lin W; Lin C; Antonarakis ES; Luo J; Yeh S; Chang C
    Eur Urol; 2017 Nov; 72(5):835-844. PubMed ID: 28528814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Characterisation of a New Patient-Derived Xenograft Model of AR-Negative Metastatic Castration-Resistant Prostate Cancer.
    Turnham DJ; Mullen MS; Bullock NP; Gilroy KL; Richards AE; Patel R; Quintela M; Meniel VS; Seaton G; Kynaston H; Clarkson RWE; Phesse TJ; Nelson PS; Haffner MC; Staffurth JN; Pearson HB
    Cells; 2024 Apr; 13(8):. PubMed ID: 38667288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzalutamide and CXCR7 inhibitor combination treatment suppresses cell growth and angiogenic signaling in castration-resistant prostate cancer models.
    Luo Y; Azad AK; Karanika S; Basourakos SP; Zuo X; Wang J; Yang L; Yang G; Korentzelos D; Yin J; Park S; Zhang P; Campbell JJ; Schall TJ; Cao G; Li L; Thompson TC
    Int J Cancer; 2018 May; 142(10):2163-2174. PubMed ID: 29277895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The MAO inhibitors phenelzine and clorgyline revert enzalutamide resistance in castration resistant prostate cancer.
    Wang K; Luo J; Yeh S; You B; Meng J; Chang P; Niu Y; Li G; Lu C; Zhu Y; Antonarakis ES; Luo J; Huang CP; Xu W; Chang C
    Nat Commun; 2020 Jun; 11(1):2689. PubMed ID: 32483206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upregulation of glucocorticoid receptor-mediated glucose transporter 4 in enzalutamide-resistant prostate cancer.
    Hoshi S; Meguro S; Imai H; Matsuoka Y; Yoshida Y; Onagi A; Tanji R; Honda-Takinami R; Matsuoka K; Koguchi T; Hata J; Sato Y; Akaihata H; Kataoka M; Ogawa S; Kojima Y
    Cancer Sci; 2021 May; 112(5):1899-1910. PubMed ID: 33619826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive characterization of RB1 mutant and MYCN amplified retinoblastoma cell lines.
    Schwermer M; Hiber M; Dreesmann S; Rieb A; Theißen J; Herold T; Schramm A; Temming P; Steenpass L
    Exp Cell Res; 2019 Feb; 375(2):92-99. PubMed ID: 30584916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.