These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31439757)

  • 1. Phase-change heterostructure enables ultralow noise and drift for memory operation.
    Ding K; Wang J; Zhou Y; Tian H; Lu L; Mazzarello R; Jia C; Zhang W; Rao F; Ma E
    Science; 2019 Oct; 366(6462):210-215. PubMed ID: 31439757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppressing Structural Relaxation in Nanoscale Antimony to Enable Ultralow-Drift Phase-Change Memory Applications.
    Chen B; Wang XP; Jiao F; Ning L; Huang J; Xie J; Zhang S; Li XB; Rao F
    Adv Sci (Weinh); 2023 Sep; 10(25):e2301043. PubMed ID: 37377084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Transition Metal Dichalcogenide Based Confinement Layers on the Performance of Phase-Change Heterostructure Memory.
    Kim TH; Park SW; Lee HJ; Kim DH; Choi JY; Kim TG
    Small; 2023 Nov; 19(48):e2303659. PubMed ID: 37485593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse Resistance Change Cr
    Hatayama S; Sutou Y; Shindo S; Saito Y; Song YH; Ando D; Koike J
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2725-2734. PubMed ID: 29280374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-level phase-change memory with ultralow power consumption and resistance drift.
    Liu B; Li K; Liu W; Zhou J; Wu L; Song Z; Elliott SR; Sun Z
    Sci Bull (Beijing); 2021 Nov; 66(21):2217-2224. PubMed ID: 36654113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ga-doped indium oxide nanowire phase change random access memory cells.
    Jin B; Lim T; Ju S; Latypov MI; Kim HS; Meyyappan M; Lee JS
    Nanotechnology; 2014 Feb; 25(5):055205. PubMed ID: 24406901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation-based comparison of cell design concepts for phase change random access memory.
    Kim DH; Merget F; Först M; Kurz H
    J Nanosci Nanotechnol; 2007 Jan; 7(1):298-305. PubMed ID: 17455495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy Efficient Neuro-Inspired Phase-Change Memory Based on Ge
    Khan AI; Yu H; Zhang H; Goggin JR; Kwon H; Wu X; Perez C; Neilson KM; Asheghi M; Goodson KE; Vora PM; Davydov A; Takeuchi I; Pop E
    Adv Mater; 2023 Jul; 35(30):e2300107. PubMed ID: 36720651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase Change Heterostructure Memory with Oxygen-Doped Sb
    Kim DH; Park SW; Choi JY; Lee HJ; Oh JS; Joo JM; Kim TG
    Small; 2024 Apr; ():e2312249. PubMed ID: 38618929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging 2D Memory Devices for In-Memory Computing.
    Yin L; Cheng R; Wen Y; Liu C; He J
    Adv Mater; 2021 Jul; 33(29):e2007081. PubMed ID: 34105195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic computing random access memory.
    Traversa FL; Bonani F; Pershin YV; Di Ventra M
    Nanotechnology; 2014 Jul; 25(28):285201. PubMed ID: 24972387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Projected phase-change memory devices.
    Koelmans WW; Sebastian A; Jonnalagadda VP; Krebs D; Dellmann L; Eleftheriou E
    Nat Commun; 2015 Sep; 6():8181. PubMed ID: 26333363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drift of Schottky Barrier Height in Phase Change Materials.
    Nir-Harwood RG; Cohen G; Majumdar A; Haight R; Ber E; Gignac L; Ordan E; Shoham L; Keller Y; Kornblum L; Yalon E
    ACS Nano; 2024 Mar; 18(11):8029-8037. PubMed ID: 38458609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale Chemical Heterogeneity Ensures Unprecedently Low Resistance Drift in Cache-Type Phase-Change Memory Materials.
    Huang J; Chen B; Sha G; Gong H; Song T; Ding K; Rao F
    Nano Lett; 2023 Mar; 23(6):2362-2369. PubMed ID: 36861962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Memory devices and applications for in-memory computing.
    Sebastian A; Le Gallo M; Khaddam-Aljameh R; Eleftheriou E
    Nat Nanotechnol; 2020 Jul; 15(7):529-544. PubMed ID: 32231270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic observation of phase transformation behaviors in indium(III) selenide nanowire based phase change memory.
    Huang YT; Huang CW; Chen JY; Ting YH; Lu KC; Chueh YL; Wu WW
    ACS Nano; 2014 Sep; 8(9):9457-62. PubMed ID: 25133955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscopic Mechanism of Carbon-Dopant Manipulating Device Performance in CGeSbTe-Based Phase Change Random Access Memory.
    Cheng Y; Cai D; Zheng Y; Yan S; Wu L; Li C; Song W; Xin T; Lv S; Huang R; Lv H; Song Z; Feng S
    ACS Appl Mater Interfaces; 2020 May; 12(20):23051-23059. PubMed ID: 32340441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructure characterization, phase transition, and device application of phase-change memory materials.
    Jiang K; Li S; Chen F; Zhu L; Li W
    Sci Technol Adv Mater; 2023; 24(1):2252725. PubMed ID: 37745781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase-change memory via a phase-changeable self-confined nano-filament.
    Park SO; Hong S; Sung SJ; Kim D; Seo S; Jeong H; Park T; Cho WJ; Kim J; Choi S
    Nature; 2024 Apr; 628(8007):293-298. PubMed ID: 38570686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breaking the speed limits of phase-change memory.
    Loke D; Lee TH; Wang WJ; Shi LP; Zhao R; Yeo YC; Chong TC; Elliott SR
    Science; 2012 Jun; 336(6088):1566-9. PubMed ID: 22723419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.