These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 31440118)
1. Efficient augmentation and relaxation learning for individualized treatment rules using observational data. Zhao YQ; Laber EB; Ning Y; Saha S; Sands BE J Mach Learn Res; 2019; 20():. PubMed ID: 31440118 [TBL] [Abstract][Full Text] [Related]
2. Improved doubly robust estimation in learning optimal individualized treatment rules. Pan Y; Zhao YQ J Am Stat Assoc; 2021; 116(533):283-294. PubMed ID: 34024961 [TBL] [Abstract][Full Text] [Related]
3. Targeted learning ensembles for optimal individualized treatment rules with time-to-event outcomes. Díaz I; Savenkov O; Ballman K Biometrika; 2018 Sep; 105(3):723-738. PubMed ID: 30799874 [TBL] [Abstract][Full Text] [Related]
4. Tree based weighted learning for estimating individualized treatment rules with censored data. Cui Y; Zhu R; Kosorok M Electron J Stat; 2017; 11(2):3927-3953. PubMed ID: 29403568 [TBL] [Abstract][Full Text] [Related]
5. Doubly Robust Learning for Estimating Individualized Treatment with Censored Data. Zhao YQ; Zeng D; Laber EB; Song R; Yuan M; Kosorok MR Biometrika; 2015 Mar; 102(1):151-168. PubMed ID: 25937641 [TBL] [Abstract][Full Text] [Related]
6. Robust regression for optimal individualized treatment rules. Xiao W; Zhang HH; Lu W Stat Med; 2019 May; 38(11):2059-2073. PubMed ID: 30740747 [TBL] [Abstract][Full Text] [Related]
7. A parsimonious personalized dose-finding model via dimension reduction. Zhou W; Zhu R; Zeng D Biometrika; 2021 Sep; 108(3):643-659. PubMed ID: 34658383 [TBL] [Abstract][Full Text] [Related]
8. Statistical learning of origin-specific statically optimal individualized treatment rules. van der Laan MJ; Petersen ML Int J Biostat; 2007; 3(1):Article 6. PubMed ID: 19122792 [TBL] [Abstract][Full Text] [Related]
9. Estimation and inference on high-dimensional individualized treatment rule in observational data using split-and-pooled de-correlated score. Liang M; Choi YG; Ning Y; Smith MA; Zhao YQ J Mach Learn Res; 2022; 23():. PubMed ID: 38098839 [TBL] [Abstract][Full Text] [Related]
10. Robust outcome weighted learning for optimal individualized treatment rules. Fu S; He Q; Zhang S; Liu Y J Biopharm Stat; 2019; 29(4):606-624. PubMed ID: 31309858 [TBL] [Abstract][Full Text] [Related]
11. Incorporating Patient Preferences into Estimation of Optimal Individualized Treatment Rules. Butler EL; Laber EB; Davis SM; Kosorok MR Biometrics; 2018 Mar; 74(1):18-26. PubMed ID: 28742260 [TBL] [Abstract][Full Text] [Related]
15. On Robustness of Individualized Decision Rules. Qi Z; Pang JS; Liu Y J Am Stat Assoc; 2023; 118(543):2143-2157. PubMed ID: 38143785 [TBL] [Abstract][Full Text] [Related]
16. Residual Weighted Learning for Estimating Individualized Treatment Rules. Zhou X; Mayer-Hamblett N; Khan U; Kosorok MR J Am Stat Assoc; 2017; 112(517):169-187. PubMed ID: 28943682 [TBL] [Abstract][Full Text] [Related]
17. Causal effect models for realistic individualized treatment and intention to treat rules. van der Laan MJ; Petersen ML Int J Biostat; 2007; 3(1):Article 3. PubMed ID: 19122793 [TBL] [Abstract][Full Text] [Related]
18. On Sparse representation for Optimal Individualized Treatment Selection with Penalized Outcome Weighted Learning. Song R; Kosorok M; Zeng D; Zhao Y; Laber E; Yuan M Stat; 2015; 4(1):59-68. PubMed ID: 25883393 [TBL] [Abstract][Full Text] [Related]