BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31440276)

  • 1. Precise Prediction of Calpain Cleavage Sites and Their Aberrance Caused by Mutations in Cancer.
    Liu ZX; Yu K; Dong J; Zhao L; Liu Z; Zhang Q; Li S; Du Y; Cheng H
    Front Genet; 2019; 10():715. PubMed ID: 31440276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GPS-CCD: a novel computational program for the prediction of calpain cleavage sites.
    Liu Z; Cao J; Gao X; Ma Q; Ren J; Xue Y
    PLoS One; 2011 Apr; 6(4):e19001. PubMed ID: 21533053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning based prediction of reversible HAT/HDAC-specific lysine acetylation.
    Yu K; Zhang Q; Liu Z; Du Y; Gao X; Zhao Q; Cheng H; Li X; Liu ZX
    Brief Bioinform; 2020 Sep; 21(5):1798-1805. PubMed ID: 32978618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning based prediction of species-specific protein S-glutathionylation sites.
    Li S; Yu K; Wang D; Zhang Q; Liu ZX; Zhao L; Cheng H
    Biochim Biophys Acta Proteins Proteom; 2020 Jul; 1868(7):140422. PubMed ID: 32234550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CalCleaveMKL: a Tool for Calpain Cleavage Prediction.
    duVerle DA; Mamitsuka H
    Methods Mol Biol; 2019; 1915():121-147. PubMed ID: 30617801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LabCaS for Ranking Potential Calpain Substrate Cleavage Sites from Amino Acid Sequence.
    Fan YX; Pan X; Zhang Y; Shen HB
    Methods Mol Biol; 2019; 1915():111-120. PubMed ID: 30617800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pCysMod: Prediction of Multiple Cysteine Modifications Based on Deep Learning Framework.
    Li S; Yu K; Wu G; Zhang Q; Wang P; Zheng J; Liu ZX; Wang J; Gao X; Cheng H
    Front Cell Dev Biol; 2021; 9():617366. PubMed ID: 33732693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Twenty years of bioinformatics research for protease-specific substrate and cleavage site prediction: a comprehensive revisit and benchmarking of existing methods.
    Li F; Wang Y; Li C; Marquez-Lago TT; Leier A; Rawlings ND; Haffari G; Revote J; Akutsu T; Chou KC; Purcell AW; Pike RN; Webb GI; Ian Smith A; Lithgow T; Daly RJ; Whisstock JC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2150-2166. PubMed ID: 30184176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SVM-based prediction of the calpain degradome using Bayes Feature Extraction.
    Wee LJ; Low HM
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5534-40. PubMed ID: 23367183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Calpain-Activated Protein Functions.
    Del Carmen Lafita-Navarro M; Conacci-Sorrell M
    Methods Mol Biol; 2019; 1915():149-160. PubMed ID: 30617802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A combinatorial approach to identify calpain cleavage sites in the Machado-Joseph disease protein ataxin-3.
    Weber JJ; Golla M; Guaitoli G; Wanichawan P; Hayer SN; Hauser S; Krahl AC; Nagel M; Samer S; Aronica E; Carlson CR; Schöls L; Riess O; Gloeckner CJ; Nguyen HP; Hübener-Schmid J
    Brain; 2017 May; 140(5):1280-1299. PubMed ID: 28334907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CaMPDB: a resource for calpain and modulatory proteolysis.
    duVerle D; Takigawa I; Ono Y; Sorimachi H; Mamitsuka H
    Genome Inform; 2010 Jan; 22():202-13. PubMed ID: 20238430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of prkC-mediated protein serine/threonine phosphorylation sites for bacteria.
    Zhang QB; Yu K; Liu Z; Wang D; Zhao Y; Yin S; Liu Z
    PLoS One; 2018; 13(10):e0203840. PubMed ID: 30278050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-directed mutagenesis of alpha II spectrin at codon 1175 modulates its mu-calpain susceptibility.
    Stabach PR; Cianci CD; Glantz SB; Zhang Z; Morrow JS
    Biochemistry; 1997 Jan; 36(1):57-65. PubMed ID: 8993318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-phenethyl-2-phenylacetamide isolated from Xenorhabdus nematophilus induces apoptosis through caspase activation and calpain-mediated Bax cleavage in U937 cells.
    Hwang SY; Paik S; Park SH; Kim HS; Lee IS; Kim SP; Baek WK; Suh MH; Kwon TK; Park JW; Park JB; Lee JJ; Suh SI
    Int J Oncol; 2003 Jan; 22(1):151-7. PubMed ID: 12469198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Se-methylselenocysteine induces apoptosis through caspase activation and Bax cleavage mediated by calpain in SKOV-3 ovarian cancer cells.
    Yeo JK; Cha SD; Cho CH; Kim SP; Cho JW; Baek WK; Suh MH; Kwon TK; Park JW; Suh SI
    Cancer Lett; 2002 Aug; 182(1):83-92. PubMed ID: 12175527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An easy-to-use FRET protein substrate to detect calpain cleavage in vitro and in vivo.
    McCartney CE; MacLeod JA; Greer PA; Davies PL
    Biochim Biophys Acta Mol Cell Res; 2018 Feb; 1865(2):221-230. PubMed ID: 29104086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cleavage of beta-catenin by calpain in prostate and mammary tumor cells.
    Rios-Doria J; Kuefer R; Ethier SP; Day ML
    Cancer Res; 2004 Oct; 64(20):7237-40. PubMed ID: 15492240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of serine/threonine phosphorylation sites in bacteria proteins.
    Li Z; Wu P; Zhao Y; Liu Z; Zhao W
    Adv Exp Med Biol; 2015; 827():275-85. PubMed ID: 25387970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of calpain cleavage sites in the G1 cyclin-dependent kinase inhibitor p19(INK4d).
    Joy J; Nalabothula N; Ghosh M; Popp O; Jochum M; Machleidt W; Gil-Parrado S; Holak TA
    Biol Chem; 2006 Mar; 387(3):329-35. PubMed ID: 16542156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.