These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: treating cancer like an infectious disease. Lamb R; Ozsvari B; Lisanti CL; Tanowitz HB; Howell A; Martinez-Outschoorn UE; Sotgia F; Lisanti MP Oncotarget; 2015 Mar; 6(7):4569-84. PubMed ID: 25625193 [TBL] [Abstract][Full Text] [Related]
23. "Energetic" Cancer Stem Cells (e-CSCs): A New Hyper-Metabolic and Proliferative Tumor Cell Phenotype, Driven by Mitochondrial Energy. Fiorillo M; Sotgia F; Lisanti MP Front Oncol; 2018; 8():677. PubMed ID: 30805301 [TBL] [Abstract][Full Text] [Related]
24. Doxycycline, an Inhibitor of Mitochondrial Biogenesis, Effectively Reduces Cancer Stem Cells (CSCs) in Early Breast Cancer Patients: A Clinical Pilot Study. Scatena C; Roncella M; Di Paolo A; Aretini P; Menicagli M; Fanelli G; Marini C; Mazzanti CM; Ghilli M; Sotgia F; Lisanti MP; Naccarato AG Front Oncol; 2018; 8():452. PubMed ID: 30364293 [No Abstract] [Full Text] [Related]
26. Targeting hypoxic cancer stem cells (CSCs) with Doxycycline: Implications for optimizing anti-angiogenic therapy. De Francesco EM; Maggiolini M; Tanowitz HB; Sotgia F; Lisanti MP Oncotarget; 2017 Aug; 8(34):56126-56142. PubMed ID: 28915578 [TBL] [Abstract][Full Text] [Related]
27. Doxycycline down-regulates DNA-PK and radiosensitizes tumor initiating cells: Implications for more effective radiation therapy. Lamb R; Fiorillo M; Chadwick A; Ozsvari B; Reeves KJ; Smith DL; Clarke RB; Howell SJ; Cappello AR; Martinez-Outschoorn UE; Peiris-Pagès M; Sotgia F; Lisanti MP Oncotarget; 2015 Jun; 6(16):14005-25. PubMed ID: 26087309 [TBL] [Abstract][Full Text] [Related]
28. A mitochondrial based oncology platform for targeting cancer stem cells (CSCs): MITO-ONC-RX. Sotgia F; Ozsvari B; Fiorillo M; De Francesco EM; Bonuccelli G; Lisanti MP Cell Cycle; 2018; 17(17):2091-2100. PubMed ID: 30257595 [TBL] [Abstract][Full Text] [Related]
29. Dendritic Polyglycerol-Conjugated Gold Nanostars for Metabolism Inhibition and Targeted Photothermal Therapy in Breast Cancer Stem Cells. Pan Y; Zhou S; Liu C; Ma X; Xing J; Parshad B; Li W; Wu A; Haag R Adv Healthc Mater; 2022 Apr; 11(8):e2102272. PubMed ID: 34990518 [TBL] [Abstract][Full Text] [Related]
30. Cancer Stem Cell Metabolism and Potential Therapeutic Targets. Snyder V; Reed-Newman TC; Arnold L; Thomas SM; Anant S Front Oncol; 2018; 8():203. PubMed ID: 29922594 [TBL] [Abstract][Full Text] [Related]
31. Mitochondrial mass, a new metabolic biomarker for stem-like cancer cells: Understanding WNT/FGF-driven anabolic signaling. Lamb R; Bonuccelli G; Ozsvári B; Peiris-Pagès M; Fiorillo M; Smith DL; Bevilacqua G; Mazzanti CM; McDonnell LA; Naccarato AG; Chiu M; Wynne L; Martinez-Outschoorn UE; Sotgia F; Lisanti MP Oncotarget; 2015 Oct; 6(31):30453-71. PubMed ID: 26421711 [TBL] [Abstract][Full Text] [Related]
32. MYC/PGC-1α Balance Determines the Metabolic Phenotype and Plasticity of Pancreatic Cancer Stem Cells. Sancho P; Burgos-Ramos E; Tavera A; Bou Kheir T; Jagust P; Schoenhals M; Barneda D; Sellers K; Campos-Olivas R; Graña O; Viera CR; Yuneva M; Sainz B; Heeschen C Cell Metab; 2015 Oct; 22(4):590-605. PubMed ID: 26365176 [TBL] [Abstract][Full Text] [Related]
33. Mitochondrial rewiring through mitophagy and mitochondrial biogenesis in cancer stem cells: A potential target for anti-CSC cancer therapy. Praharaj PP; Panigrahi DP; Bhol CS; Patra S; Mishra SR; Mahapatra KK; Behera BP; Singh A; Patil S; Bhutia SK Cancer Lett; 2021 Feb; 498():217-228. PubMed ID: 33186655 [TBL] [Abstract][Full Text] [Related]
34. Potential Therapies Targeting Metabolic Pathways in Cancer Stem Cells. Shen YA; Chen CC; Chen BJ; Wu YT; Juan JR; Chen LY; Teng YC; Wei YH Cells; 2021 Jul; 10(7):. PubMed ID: 34359941 [TBL] [Abstract][Full Text] [Related]
35. Cancer Stem Cells: Metabolic Characterization for Targeted Cancer Therapy. Kaur J; Bhattacharyya S Front Oncol; 2021; 11():756888. PubMed ID: 34804950 [TBL] [Abstract][Full Text] [Related]
36. Cancer Stem Cells in Small Cell Lung Cancer Cell Line H446: Higher Dependency on Oxidative Phosphorylation and Mitochondrial Substrate-Level Phosphorylation than Non-Stem Cancer Cells. Gao C; Shen Y; Jin F; Miao Y; Qiu X PLoS One; 2016; 11(5):e0154576. PubMed ID: 27167619 [TBL] [Abstract][Full Text] [Related]
37. The troglitazone derivative EP13 disrupts energy metabolism through respiratory chain complex I inhibition in breast cancer cells and potentiates the antiproliferative effect of glycolysis inhibitors. Muller C; Lacroix-Malgras V; Kluza J; Laine W; Güler Y; Bost F; Boisbrun M; Mazerbourg S; Flament S Cancer Cell Int; 2024 Apr; 24(1):132. PubMed ID: 38594745 [TBL] [Abstract][Full Text] [Related]
38. Mitochondria as therapeutic targets for cancer stem cells. Song IS; Jeong JY; Jeong SH; Kim HK; Ko KS; Rhee BD; Kim N; Han J World J Stem Cells; 2015 Mar; 7(2):418-27. PubMed ID: 25815125 [TBL] [Abstract][Full Text] [Related]
39. Metformin and prostate cancer stem cells: a novel therapeutic target. Mayer MJ; Klotz LH; Venkateswaran V Prostate Cancer Prostatic Dis; 2015 Dec; 18(4):303-9. PubMed ID: 26215782 [TBL] [Abstract][Full Text] [Related]
40. Cancer stem cell metabolism: target for cancer therapy. Chae YC; Kim JH BMB Rep; 2018 Jul; 51(7):319-326. PubMed ID: 29764565 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]