These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 31440496)

  • 21. Modelling thermoelectric transport in III-V nanowires using a Boltzmann transport approach: a review.
    Ghukasyan A; LaPierre RR
    Nanotechnology; 2021 Jan; 32(4):042001. PubMed ID: 33111709
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advances in Atomic Layer Deposition (ALD) Nanolaminate Synthesis of Thermoelectric Films in Porous Templates for Improved Seebeck Coefficient.
    Chen X; Baumgart H
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32178403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermoelectric Properties of Nanowires with a Graphitic Shell.
    Lee JW; Lee EK; Kim BS; Lee JH; Kim HG; Jang HS; Hwang SW; Choi BL; Whang D
    ChemSusChem; 2015 Jul; 8(14):2372-7. PubMed ID: 25939904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High Power Thermoelectric Generator Based on Vertical Silicon Nanowires.
    Elyamny S; Dimaggio E; Magagna S; Narducci D; Pennelli G
    Nano Lett; 2020 Jul; 20(7):4748-4753. PubMed ID: 32463681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anisotropic Effects on the Thermoelectric Properties of Highly Oriented Electrodeposited Bi2Te3 Films.
    Manzano CV; Abad B; Muñoz Rojo M; Koh YR; Hodson SL; Lopez Martinez AM; Xu X; Shakouri A; Sands TD; Borca-Tasciuc T; Martin-Gonzalez M
    Sci Rep; 2016 Jan; 6():19129. PubMed ID: 26776726
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Seebeck coefficient of silicon nanowire forests doped by thermal diffusion.
    Elyamny S; Dimaggio E; Pennelli G
    Beilstein J Nanotechnol; 2020; 11():1707-1713. PubMed ID: 33224701
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermoelectric properties of SnSe nanowires with different diameters.
    Hernandez JA; Ruiz A; Fonseca LF; Pettes MT; Jose-Yacaman M; Benitez A
    Sci Rep; 2018 Aug; 8(1):11966. PubMed ID: 30097631
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Imaging Thermoelectric Properties at the Nanoscale.
    Grauby S; Ben Amor A; Hallais G; Vincent L; Dilhaire S
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34062797
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct measurement of the thermoelectric properties of electrochemically deposited Bi
    Recatala-Gomez J; Kumar P; Suwardi A; Abutaha A; Nandhakumar I; Hippalgaonkar K
    Sci Rep; 2020 Oct; 10(1):17922. PubMed ID: 33087815
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of a Te-depleted surface on the thermoelectric transport properties of Bi₂Te₃ nanowires.
    Hamdou B; Beckstedt A; Kimling J; Dorn A; Akinsinde L; Bäßler S; Pippel E; Nielsch K
    Nanotechnology; 2014 Sep; 25(36):365401. PubMed ID: 25140827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Review on measurement techniques of transport properties of nanowires.
    Rojo MM; Calero OC; Lopeandia AF; Rodriguez-Viejo J; Martín-Gonzalez M
    Nanoscale; 2013 Dec; 5(23):11526-44. PubMed ID: 24113712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface oxidation and thermoelectric properties of indium-doped tin telluride nanowires.
    Li Z; Xu E; Losovyj Y; Li N; Chen A; Swartzentruber B; Sinitsyn N; Yoo J; Jia Q; Zhang S
    Nanoscale; 2017 Sep; 9(35):13014-13024. PubMed ID: 28832046
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Boundary Engineering for the Thermoelectric Performance of Bulk Alloys Based on Bismuth Telluride.
    Mun H; Choi SM; Lee KH; Kim SW
    ChemSusChem; 2015 Jul; 8(14):2312-26. PubMed ID: 25782971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmon Resonances in 1D Nanowire Arrays and 3D Nanowire Networks of Topological Insulators and Metals.
    Caballero-Calero O; Ruiz-Clavijo A; Manzano CV; Martín-González M; Armelles G
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616063
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measuring Device and Material ZT in a Thin-Film Si-Based Thermoelectric Microgenerator.
    Ferrando-Villalba P; Pérez-Marín AP; Abad L; Dalkiranis GG; Lopeandia AF; Garcia G; Rodriguez-Viejo J
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 31022893
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermoelectric properties of individual single-crystalline PbTe nanowires grown by a vapor transport method.
    Lee SH; Shim W; Jang SY; Roh JW; Kim P; Park J; Lee W
    Nanotechnology; 2011 Jul; 22(29):295707. PubMed ID: 21677373
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Field-effect modulation of Seebeck coefficient in single PbSe nanowires.
    Liang W; Hochbaum AI; Fardy M; Rabin O; Zhang M; Yang P
    Nano Lett; 2009 Apr; 9(4):1689-93. PubMed ID: 19309086
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal and Thermoelectric Transport in Highly Resistive Single Sb
    Ko TY; Shellaiah M; Sun KW
    Sci Rep; 2016 Oct; 6():35086. PubMed ID: 27713527
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compositional disorder and its effect on the thermoelectric performance of Zn₃P₂ nanowire-copper nanoparticle composites.
    Brockway L; Vasiraju V; Vaddiraju S
    Nanotechnology; 2014 Mar; 25(12):125402. PubMed ID: 24577096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering Nanostructural Routes for Enhancing Thermoelectric Performance: Bulk to Nanoscale.
    Mohanraman R; Lan TW; Hsiung TC; Amada D; Lee PC; Ou MN; Chen YY
    Front Chem; 2015; 3():63. PubMed ID: 26913280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.