These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31441083)

  • 1. GPU-Accelerated Large-Scale Excited-State Simulation Based on Divide-and-Conquer Time-Dependent Density-Functional Tight-Binding.
    Yoshikawa T; Komoto N; Nishimura Y; Nakai H
    J Comput Chem; 2019 Dec; 40(31):2778-2786. PubMed ID: 31441083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear-scaling self-consistent field calculations based on divide-and-conquer method using resolution-of-identity approximation on graphical processing units.
    Yoshikawa T; Nakai H
    J Comput Chem; 2015 Jan; 36(3):164-70. PubMed ID: 25392975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Large-Scale Excited-State Calculations Based on the Divide-and-Conquer Time-Dependent Density Functional Tight-Binding Method.
    Komoto N; Yoshikawa T; Ono J; Nishimura Y; Nakai H
    J Chem Theory Comput; 2019 Mar; 15(3):1719-1727. PubMed ID: 30673283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-Scale Molecular Dynamics Simulation for Ground and Excited States Based on Divide-and-Conquer Long-Range Corrected Density-Functional Tight-Binding Method.
    Komoto N; Yoshikawa T; Nishimura Y; Nakai H
    J Chem Theory Comput; 2020 Apr; 16(4):2369-2378. PubMed ID: 32074445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-adiabatic molecular dynamics with divide-and-conquer type large-scale excited-state calculations.
    Uratani H; Nakai H
    J Chem Phys; 2020 Jun; 152(22):224109. PubMed ID: 32534554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide-and-conquer, density-functional tight-binding, and massively parallel computation.
    Nishizawa H; Nishimura Y; Kobayashi M; Irle S; Nakai H
    J Comput Chem; 2016 Aug; 37(21):1983-92. PubMed ID: 27317328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dcdftbmd: Divide-and-Conquer Density Functional Tight-Binding Program for Huge-System Quantum Mechanical Molecular Dynamics Simulations.
    Nishimura Y; Nakai H
    J Comput Chem; 2019 Jun; 40(15):1538-1549. PubMed ID: 30828839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel implementation of efficient charge-charge interaction evaluation scheme in periodic divide-and-conquer density-functional tight-binding calculations.
    Nishimura Y; Nakai H
    J Comput Chem; 2018 Jan; 39(2):105-116. PubMed ID: 29047123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an excited-state calculation method for large systems using dynamical polarizability: A divide-and-conquer approach at the time-dependent density functional level.
    Nakai H; Yoshikawa T
    J Chem Phys; 2017 Mar; 146(12):124123. PubMed ID: 28388124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trajectory Surface Hopping Approach to Condensed-Phase Nonradiative Relaxation Dynamics Using Divide-and-Conquer Spin-Flip Time-Dependent Density-Functional Tight Binding.
    Uratani H; Yoshikawa T; Nakai H
    J Chem Theory Comput; 2021 Mar; 17(3):1290-1300. PubMed ID: 33577323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale excited-state calculation using dynamical polarizability evaluated by divide-and-conquer based coupled cluster linear response method.
    Yoshikawa T; Yoshihara J; Nakai H
    J Chem Phys; 2020 Jan; 152(2):024102. PubMed ID: 31941302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double-buffered, heterogeneous CPU + GPU integral digestion algorithm for single-excitation calculations involving a large number of excited states.
    Morrison AF; Epifanovsky E; Herbert JM
    J Comput Chem; 2018 Oct; 39(26):2173-2182. PubMed ID: 30368836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel approach to excited-state calculations of large molecules based on divide-and-conquer method: application to photoactive yellow protein.
    Yoshikawa T; Kobayashi M; Fujii A; Nakai H
    J Phys Chem B; 2013 May; 117(18):5565-73. PubMed ID: 23627739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin-flip approach within time-dependent density functional tight-binding method: Theory and applications.
    Inamori M; Yoshikawa T; Ikabata Y; Nishimura Y; Nakai H
    J Comput Chem; 2020 Jun; 41(16):1538-1548. PubMed ID: 32220108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient pole-search algorithm for dynamic polarizability: Toward alternative excited-state calculation for large systems.
    Nakai H; Yoshikawa T; Nonaka Y
    J Comput Chem; 2017 Jan; 38(1):7-14. PubMed ID: 27706818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Divide-and-Conquer-Type Density-Functional Tight-Binding Molecular Dynamics Simulations of Proton Diffusion in a Bulk Water System.
    Nakai H; Sakti AW; Nishimura Y
    J Phys Chem B; 2016 Jan; 120(1):217-21. PubMed ID: 26694784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computerized implementation of higher-order electron-correlation methods and their linear-scaling divide-and-conquer extensions.
    Nakano M; Yoshikawa T; Hirata S; Seino J; Nakai H
    J Comput Chem; 2017 Nov; 38(29):2520-2527. PubMed ID: 28795766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free energy change estimation: The Divide and Conquer MBAR method.
    Jia X; Ge H; Mei Y
    J Comput Chem; 2021 Jun; 42(17):1204-1211. PubMed ID: 33851438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Divide-and-Conquer Density-Functional Tight-Binding Method for Theoretical Research on Li-Ion Battery.
    Chou CP; Sakti AW; Nishimura Y; Nakai H
    Chem Rec; 2019 Apr; 19(4):746-757. PubMed ID: 30462370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GPU accelerated implementation of NCI calculations using promolecular density.
    Rubez G; Etancelin JM; Vigouroux X; Krajecki M; Boisson JC; Hénon E
    J Comput Chem; 2017 May; 38(14):1071-1083. PubMed ID: 28342203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.