These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 31441083)
21. A divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum molecular dynamics simulations. Shimojo F; Hattori S; Kalia RK; Kunaseth M; Mou W; Nakano A; Nomura K; Ohmura S; Rajak P; Shimamura K; Vashishta P J Chem Phys; 2014 May; 140(18):18A529. PubMed ID: 24832337 [TBL] [Abstract][Full Text] [Related]
22. Nonadiabatic molecular dynamics simulations based on time-dependent density functional tight-binding method. Wu X; Wen S; Song H; Frauenheim T; Tretiak S; Yam C; Zhang Y J Chem Phys; 2022 Aug; 157(8):084114. PubMed ID: 36049993 [TBL] [Abstract][Full Text] [Related]
23. Finite-temperature-based time-dependent density-functional theory method for static electron correlation systems. Yoshikawa T; Doi T; Nakai H J Chem Phys; 2020 Jun; 152(24):244111. PubMed ID: 32610978 [TBL] [Abstract][Full Text] [Related]
24. Extension of linear-scaling divide-and-conquer-based correlation method to coupled cluster theory with singles and doubles excitations. Kobayashi M; Nakai H J Chem Phys; 2008 Jul; 129(4):044103. PubMed ID: 18681630 [TBL] [Abstract][Full Text] [Related]
25. Automated error control in divide-and-conquer self-consistent field calculations. Kobayashi M; Fujimori T; Taketsugu T J Comput Chem; 2018 Jun; 39(15):909-916. PubMed ID: 29399822 [TBL] [Abstract][Full Text] [Related]
27. Dynamic hyperpolarizability calculations of large systems: the linear-scaling divide-and-conquer approach. Kobayashi M; Touma T; Nakai H J Chem Phys; 2012 Feb; 136(8):084108. PubMed ID: 22380033 [TBL] [Abstract][Full Text] [Related]
28. Implementation of divide-and-conquer method including Hartree-Fock exchange interaction. Akama T; Kobayashi M; Nakai H J Comput Chem; 2007 Sep; 28(12):2003-12. PubMed ID: 17455367 [TBL] [Abstract][Full Text] [Related]
29. GPU Acceleration of Large-Scale Full-Frequency GW Calculations. Yu VW; Govoni M J Chem Theory Comput; 2022 Aug; 18(8):4690-4707. PubMed ID: 35913080 [TBL] [Abstract][Full Text] [Related]
30. The divide-and-conquer second-order proton propagator method based on nuclear orbital plus molecular orbital theory for the efficient computation of proton binding energies. Tsukamoto Y; Ikabata Y; Romero J; Reyes A; Nakai H Phys Chem Chem Phys; 2016 Oct; 18(39):27422-27431. PubMed ID: 27711434 [TBL] [Abstract][Full Text] [Related]
31. Regularized Localized Molecular Orbitals in a Divide-and-Conquer Approach for Linear Scaling Calculations. Peng L; Peng D; Gu FL; Yang W J Chem Theory Comput; 2022 May; 18(5):2975-2982. PubMed ID: 35416665 [TBL] [Abstract][Full Text] [Related]
32. Quantum Algorithm of the Divide-and-Conquer Unitary Coupled Cluster Method with a Variational Quantum Eigensolver. Yoshikawa T; Takanashi T; Nakai H J Chem Theory Comput; 2022 Sep; 18(9):5360-5373. PubMed ID: 35926142 [TBL] [Abstract][Full Text] [Related]
33. Accelerated event-by-event Monte Carlo microdosimetric calculations of electrons and protons tracks on a multi-core CPU and a CUDA-enabled GPU. Kalantzis G; Tachibana H Comput Methods Programs Biomed; 2014; 113(1):116-25. PubMed ID: 24113420 [TBL] [Abstract][Full Text] [Related]
34. Linear scaling algorithm for tight-binding molecular dynamics simulations. He ZH; Ye XB; Pan BC J Chem Phys; 2019 Mar; 150(11):114107. PubMed ID: 30902004 [TBL] [Abstract][Full Text] [Related]
36. Reconsidering an analytical gradient expression within a divide-and-conquer self-consistent field approach: exact formula and its approximate treatment. Kobayashi M; Kunisada T; Akama T; Sakura D; Nakai H J Chem Phys; 2011 Jan; 134(3):034105. PubMed ID: 21261328 [TBL] [Abstract][Full Text] [Related]
37. Divide-and-Conquer-Type Density-Functional Tight-Binding Simulations of Hydroxide Ion Diffusion in Bulk Water. Sakti AW; Nishimura Y; Nakai H J Phys Chem B; 2017 Feb; 121(6):1362-1371. PubMed ID: 28112934 [TBL] [Abstract][Full Text] [Related]
38. Hierarchical parallelization of divide-and-conquer density functional tight-binding molecular dynamics and metadynamics simulations. Nishimura Y; Nakai H J Comput Chem; 2020 Jul; 41(19):1759-1772. PubMed ID: 32358918 [TBL] [Abstract][Full Text] [Related]
39. Ab initio nonadiabatic dynamics of multichromophore complexes: a scalable graphical-processing-unit-accelerated exciton framework. Sisto A; Glowacki DR; Martinez TJ Acc Chem Res; 2014 Sep; 47(9):2857-66. PubMed ID: 25186064 [TBL] [Abstract][Full Text] [Related]
40. An effective energy gradient expression for divide-and-conquer second-order Møller-Plesset perturbation theory. Kobayashi M; Nakai H J Chem Phys; 2013 Jan; 138(4):044102. PubMed ID: 23387563 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]