BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31441122)

  • 1. Modelling the effect of commercially available blue-blocking lenses on visual and non-visual functions.
    Alzahrani HS; Khuu SK; Roy M
    Clin Exp Optom; 2020 May; 103(3):339-346. PubMed ID: 31441122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling the effect of light through commercially available blue-blocking lenses on the human circadian system.
    Alzahrani HS; Khuu SK; Roy M
    Clin Exp Optom; 2022 Apr; 105(3):275-280. PubMed ID: 33779493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The physiology of scotopic vision, contrast vision, color vision, and circadian rhythmicity: can these parameters be influenced by blue-light-filter lenses?
    Augustin AJ
    Retina; 2008 Oct; 28(9):1179-87. PubMed ID: 18695631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Violet and blue light blocking intraocular lenses: photoprotection versus photoreception.
    Mainster MA
    Br J Ophthalmol; 2006 Jun; 90(6):784-92. PubMed ID: 16714268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian photoreception: ageing and the eye's important role in systemic health.
    Turner PL; Mainster MA
    Br J Ophthalmol; 2008 Nov; 92(11):1439-44. PubMed ID: 18757473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Blue-blocking Lenses on Photostress Recovery Times.
    Alzahrani HS; Khuu SK; Ali A; Roy M
    Optom Vis Sci; 2020 Nov; 97(11):995-1004. PubMed ID: 33181732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blue-blocking IOLs: a complete review of the literature.
    Henderson BA; Grimes KJ
    Surv Ophthalmol; 2010; 55(3):284-9. PubMed ID: 20499436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blue-blocking IOLs decrease photoreception without providing significant photoprotection.
    Mainster MA; Turner PL
    Surv Ophthalmol; 2010; 55(3):272-89. PubMed ID: 19883931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of blue-blocking lenses on colour discrimination.
    Baldasso M; Roy M; Boon MY; Dain SJ
    Clin Exp Optom; 2021 Jan; 104(1):56-61. PubMed ID: 33090580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmission spectrums and retinal blue-light irradiance values of untinted and yellow-tinted intraocular lenses.
    Tanito M; Okuno T; Ishiba Y; Ohira A
    J Cataract Refract Surg; 2010 Feb; 36(2):299-307. PubMed ID: 20152614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of blue-blocking lenses on colour contrast sensitivity.
    Alzahran HS; Roy M; Honson V; Khuu SK
    Clin Exp Optom; 2021 Mar; 104(2):207-214. PubMed ID: 32830377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral Evaluation of Eyeglass Blocking Efficiency of Ultraviolet/High-energy Visible Blue Light for Ocular Protection.
    Giannos SA; Kraft ER; Lyons LJ; Gupta PK
    Optom Vis Sci; 2019 Jul; 96(7):513-522. PubMed ID: 31274740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short wavelength light filtering by the natural human lens and IOLs -- implications for entrainment of circadian rhythm.
    Brøndsted AE; Lundeman JH; Kessel L
    Acta Ophthalmol; 2013 Feb; 91(1):52-7. PubMed ID: 22136468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual quality assessment in patients with orange-tinted blue light-filtering and clear ultraviolet light-filtering intraocular lenses.
    Schmack I; Schimpf M; Stolzenberg A; Conrad-Hengerer I; Hengerer FH; Dick HB
    J Cataract Refract Surg; 2012 May; 38(5):823-32. PubMed ID: 22520306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimations of Retinal Blue-Light Irradiance Values and Melatonin Suppression Indices Through Clear and Yellow-Tinted Intraocular Lenses.
    Tanito M; Sano I; Okuno T; Ishiba Y; Ohira A
    Adv Exp Med Biol; 2018; 1074():53-60. PubMed ID: 29721927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blue Light-Induced Retinal Neuronal Injury and Amelioration by Commercially Available Blue Light-Blocking Lenses.
    Theruveethi N; Bui BV; Joshi MB; Valiathan M; Ganeshrao SB; Gopalakrishnan S; Kabekkodu SP; Bhat SS; Surendran S
    Life (Basel); 2022 Feb; 12(2):. PubMed ID: 35207530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transmittance characteristics of ultraviolet and blue-light-filtering intraocular lenses.
    Brockmann C; Schulz M; Laube T
    J Cataract Refract Surg; 2008 Jul; 34(7):1161-6. PubMed ID: 18571086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blue-Light-Blocking Lenses Ameliorate Structural Alterations in the Rodent Hippocampus.
    Akansha EO; Bui BV; Ganeshrao SB; Bakthavatchalam P; Gopalakrishnan S; Mattam S; Poojary RR; Jathanna JS; Jose J; Theruveethi NN
    Int J Environ Res Public Health; 2022 Oct; 19(19):. PubMed ID: 36232222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultraviolet-B phototoxicity and hypothetical photomelanomagenesis: intraocular and crystalline lens photoprotection.
    Mainster MA; Turner PL
    Am J Ophthalmol; 2010 Apr; 149(4):543-9. PubMed ID: 20346776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian regulation of phosphodiesterase 6 genes in zebrafish differs between cones and rods: Implications for photopic and scotopic vision.
    Abalo XM; Lagman D; Heras G; Del Pozo A; Eggert J; Larhammar D
    Vision Res; 2020 Jan; 166():43-51. PubMed ID: 31855667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.