BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 31441167)

  • 1. Analysis of brain subnetworks within the context of their whole-brain networks.
    Bahrami M; Laurienti PJ; Simpson SL
    Hum Brain Mapp; 2019 Dec; 40(17):5123-5141. PubMed ID: 31441167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong-Weak Pruning for Brain Network Identification in Connectome-Wide Neuroimaging: Application to Amyotrophic Lateral Sclerosis Disease Stage Characterization.
    Serra A; Galdi P; Pesce E; Fratello M; Trojsi F; Tedeschi G; Tagliaferri R; Esposito F
    Int J Neural Syst; 2019 Sep; 29(7):1950007. PubMed ID: 30929575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a Quantified Network Portrait of a Population.
    Tunç B; Shankar V; Parker D; Schultz RT; Verma R
    Inf Process Med Imaging; 2015; 24():650-61. PubMed ID: 26221710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporally flexible subnetworks reveal the quasi-cyclic nature of integration and segregation in the human brain.
    Strindberg M; Fransson P; Cabral J; Ådén U
    Neuroimage; 2021 Oct; 239():118287. PubMed ID: 34153450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A MATLAB toolbox for multivariate analysis of brain networks.
    Bahrami M; Laurienti PJ; Simpson SL
    Hum Brain Mapp; 2019 Jan; 40(1):175-186. PubMed ID: 30256496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Connectome-based models predict attentional control in aging adults.
    Fountain-Zaragoza S; Samimy S; Rosenberg MD; Prakash RS
    Neuroimage; 2019 Feb; 186():1-13. PubMed ID: 30394324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ANOVA approach for statistical comparisons of brain networks.
    Fraiman D; Fraiman R
    Sci Rep; 2018 Mar; 8(1):4746. PubMed ID: 29549369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain network segregation and integration during an epoch-related working memory fMRI experiment.
    Fransson P; Schiffler BC; Thompson WH
    Neuroimage; 2018 Sep; 178():147-161. PubMed ID: 29777824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A consistent organizational structure across multiple functional subnetworks of the human brain.
    Stillman PE; Wilson JD; Denny MJ; Desmarais BA; Cranmer SJ; Lu ZL
    Neuroimage; 2019 Aug; 197():24-36. PubMed ID: 30928689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired rich club and increased local connectivity in children with traumatic brain injury: Local support for the rich?
    Verhelst H; Vander Linden C; De Pauw T; Vingerhoets G; Caeyenberghs K
    Hum Brain Mapp; 2018 Jul; 39(7):2800-2811. PubMed ID: 29528158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracting brain disease-related connectome subgraphs by adaptive dense subgraph discovery.
    Wu Q; Huang X; Culbreth AJ; Waltz JA; Hong LE; Chen S
    Biometrics; 2022 Dec; 78(4):1566-1578. PubMed ID: 34374075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subnetwork mining on functional connectivity network for classification of minimal hepatic encephalopathy.
    Zhang D; Tu L; Zhang LJ; Jie B; Lu GM
    Brain Imaging Behav; 2018 Jun; 12(3):901-911. PubMed ID: 28717971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Blind Module Identification Approach for Predicting Effective Connectivity Within Brain Dynamical Subnetworks.
    Karameh FN; Nahas Z
    Brain Topogr; 2019 Jan; 32(1):28-65. PubMed ID: 30076488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Data Structure for Real-Time Aggregation Queries of Big Brain Networks.
    Ganglberger FJ; Kaczanowska J; Haubensak W; Bühler K
    Neuroinformatics; 2020 Jan; 18(1):131-149. PubMed ID: 31240560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A two-part mixed-effects modeling framework for analyzing whole-brain network data.
    Simpson SL; Laurienti PJ
    Neuroimage; 2015 Jun; 113():310-9. PubMed ID: 25796135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cognitive abilities are associated with specific conjunctions of structural and functional neural subnetworks.
    Kristanto D; Hildebrandt A; Sommer W; Zhou C
    Neuroimage; 2023 Oct; 279():120304. PubMed ID: 37536528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multivariate Connectome-Based Symptom Mapping in Post-Stroke Patients: Networks Supporting Language and Speech.
    Yourganov G; Fridriksson J; Rorden C; Gleichgerrcht E; Bonilha L
    J Neurosci; 2016 Jun; 36(25):6668-79. PubMed ID: 27335399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Function-specific and Enhanced Brain Structural Connectivity Mapping via Joint Modeling of Diffusion and Functional MRI.
    Chu SH; Parhi KK; Lenglet C
    Sci Rep; 2018 Mar; 8(1):4741. PubMed ID: 29549287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structurofunctional resting-state networks correlate with motor function in chronic stroke.
    Kalinosky BT; Berrios Barillas R; Schmit BD
    Neuroimage Clin; 2017; 16():610-623. PubMed ID: 28971011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complementary contributions of concurrent EEG and fMRI connectivity for predicting structural connectivity.
    Wirsich J; Ridley B; Besson P; Jirsa V; Bénar C; Ranjeva JP; Guye M
    Neuroimage; 2017 Nov; 161():251-260. PubMed ID: 28842386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.