BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31441256)

  • 1. [Construction and analysis of muscle functional network for exoskeleton robot].
    Chen L; Zhang C; Song X; Zhang T; Liu X; Yang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Aug; 36(4):565-572. PubMed ID: 31441256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Evaluation of a Force Sensor-Controlled Upper-Limb Power-Assisted Exoskeleton with High Backdrivability.
    Liu C; Liang H; Ueda N; Li P; Fujimoto Y; Zhu C
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33182271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-inspired upper limb soft exoskeleton to reduce stroke-induced complications.
    Li N; Yang T; Yu P; Chang J; Zhao L; Zhao X; Elhajj IH; Xi N; Liu L
    Bioinspir Biomim; 2018 Aug; 13(6):066001. PubMed ID: 30088477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A real-time stable-control gait switching strategy for lower-limb rehabilitation exoskeleton.
    Guo Z; Wang C; Song C
    PLoS One; 2020; 15(8):e0238247. PubMed ID: 32853239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Channel Synergy-based Human-Robot Interface for a Lower Limb Walking Assistance Exoskeleton.
    Shi K; Huang R; Mu F; Peng Z; Yin J; Cheng H
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1076-1081. PubMed ID: 34891474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection of EMG Sensors Based on Motion Coordinated Analysis.
    Chen L; Liu X; Xuan B; Zhang J; Liu Z; Zhang Y
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke.
    Rong W; Li W; Pang M; Hu J; Wei X; Yang B; Wai H; Zheng X; Hu X
    J Neuroeng Rehabil; 2017 Apr; 14(1):34. PubMed ID: 28446181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration.
    Siu HC; Arenas AM; Sun T; Stirling LA
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29401754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks.
    Trigili E; Grazi L; Crea S; Accogli A; Carpaneto J; Micera S; Vitiello N; Panarese A
    J Neuroeng Rehabil; 2019 Mar; 16(1):45. PubMed ID: 30922326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Feasibility Study of a Leg-exoskeleton Assistive Wheelchair Robot with Tests on Gluteus Medius Muscles.
    Huang G; Ceccarelli M; Huang Q; Zhang W; Yu Z; Chen X; Mai J
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30696120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periodic event-triggered sliding mode control for lower limb exoskeleton based on human-robot cooperation.
    Wang J; Liu J; Zhang G; Guo S
    ISA Trans; 2022 Apr; 123():87-97. PubMed ID: 34217496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training.
    Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H
    Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T; Kim I; Lee SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of an upper limb exoskeleton on muscle activity during various construction and manufacturing tasks.
    Musso M; Oliveira AS; Bai S
    Appl Ergon; 2024 Jan; 114():104158. PubMed ID: 37890312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot.
    Ao D; Song R; Gao J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and analysis of a lower limb assistive exoskeleton robot.
    Li X; Wang KY; Yang ZY
    Technol Health Care; 2024; 32(S1):79-93. PubMed ID: 38759039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EMG-based neuro-fuzzy control of a 4DOF upper-limb power-assist exoskeleton.
    Kiguchi K; Imada Y; Liyanage M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3040-3. PubMed ID: 18002635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and analysis of a compatible exoskeleton rehabilitation robot system based on upper limb movement mechanism.
    Ning Y; Wang H; Liu Y; Wang Q; Rong Y; Niu J
    Med Biol Eng Comput; 2024 Mar; 62(3):883-899. PubMed ID: 38081953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromyography Assessment of the Assistance Provided by an Upper-Limb Exoskeleton in Maintenance Tasks.
    Blanco A; Catalán JM; Díez JA; García JV; Lobato E; García-Aracil N
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.