These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31441660)

  • 1. Resonant Behavior in a Periodically Forced Nonisothermal Oregonator.
    García-Selfa D; Muñuzuri AP; Pérez-Mercader J; Simakov DSA
    J Phys Chem A; 2019 Sep; 123(38):8083-8088. PubMed ID: 31441660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Period doubling in a periodically forced Belousov-Zhabotinsky reaction.
    Marts B; Simpson DJ; Hagberg A; Lin AL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026213. PubMed ID: 17930127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex mixed-mode oscillatory patterns in a periodically forced excitable Belousov-Zhabotinsky reaction model.
    Español MI; Rotstein HG
    Chaos; 2015 Jun; 25(6):064612. PubMed ID: 26117137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Four-phase patterns in forced oscillatory systems.
    Lin AL; Hagberg A; Ardelea A; Bertram M; Swinney HL; Meron E
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt B):3790-8. PubMed ID: 11088896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low frequency temperature forcing of chemical oscillations.
    Novak J; Thompson BW; Wilson MC; Taylor AF; Britton MM
    Phys Chem Chem Phys; 2011 Jul; 13(26):12321-7. PubMed ID: 21643566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the oscillatory dynamics of the Belousov-Zhabotinsky reaction using ruthenium nanoparticle decorated graphene.
    Prasanna Kumar DJ; Verma S; Jasuja K; Dayal P
    Phys Chem Chem Phys; 2019 Feb; 21(6):3164-3173. PubMed ID: 30676592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance tongues and patterns in periodically forced reaction-diffusion systems.
    Lin AL; Hagberg A; Meron E; Swinney HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066217. PubMed ID: 15244718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of noise correlation on noise-induced oscillation frequency in the photosensitive Belousov-Zhabotinsky reaction in a continuous stirred tank reactor.
    Simakov DS; Pérez-Mercader J
    J Phys Chem A; 2013 Dec; 117(51):13999-4005. PubMed ID: 24274189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bromide control, bifurcation and activation in the Belousov-Zhabotinsky reaction.
    Hastings HM; Sobel SG; Field RJ; Bongiovi D; Burke B; Richford D; Finzel K; Garuthara M
    J Phys Chem A; 2008 May; 112(21):4715-8. PubMed ID: 18459756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronization of Belousov-Zhabotinsky oscillators with electrochemical coupling in a spontaneous process.
    Liu Y; Pérez-Mercader J; Kiss IZ
    Chaos; 2022 Sep; 32(9):093128. PubMed ID: 36182363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature dependence of the Oregonator model for the Belousov-Zhabotinsky reaction.
    Pullela SR; Cristancho D; He P; Luo D; Hall KR; Cheng Z
    Phys Chem Chem Phys; 2009 Jun; 11(21):4236-43. PubMed ID: 19458825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periodic forcing and feedback control of nonlinear lumped oscillators and meandering spiral waves.
    Zykov VS; Bordiougov G; Brandtstädter H; Gerdes I; Engel H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016214. PubMed ID: 12935232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonant and nonresonant patterns in forced oscillators.
    Marts B; Hagberg A; Meron E; Lin AL
    Chaos; 2006 Sep; 16(3):037113. PubMed ID: 17014247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wave instability induced by nonlocal spatial coupling in a model of the light-sensitive Belousov-Zhabotinsky reaction.
    Nicola EM; Bär M; Engel H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066225. PubMed ID: 16906964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of the activation energy in the Belousov-Zhabotinsky reaction by temperature effect on excitable waves.
    Zhang J; Zhou L; Ouyang Q
    J Phys Chem A; 2007 Feb; 111(6):1052-6. PubMed ID: 17249646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical interpretation of oscillatory modes at a Hopf point.
    Danø S; Madsen MF; Sørensen PG
    Phys Chem Chem Phys; 2005 Apr; 7(8):1674-9. PubMed ID: 19787924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring of spatiotemporal patterns in the oscillatory chemical reactions with the infrared camera: experiments and model interpretation.
    Pekala K; Wiśniewski A; Jurczakowski R; Wiśniewski T; Wojdyga M; Orlik M
    J Phys Chem A; 2010 Aug; 114(30):7903-11. PubMed ID: 20666538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oregonator Scaling Motivated by the Showalter-Noyes Limit.
    Hastings HM; Field RJ; Sobel SG; Guralnick D
    J Phys Chem A; 2016 Oct; 120(41):8006-8010. PubMed ID: 27690433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coexistence of two bifurcation regimes in a closed ferroin-catalyzed Belousov-Zhabotinsky reaction.
    Wang J; Zhao J; Chen Y; Gao Q; Wang Y
    J Phys Chem A; 2005 Feb; 109(7):1374-81. PubMed ID: 16833454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow acceleration and deacceleration through a Hopf bifurcation: power ramps, target nucleation, and elliptic bursting.
    Baer SM; Gaekel EM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036205. PubMed ID: 18851119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.