These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 31441913)

  • 1. Towards rational catalyst design: boosting the rapid prediction of transition-metal activity by improved scaling relations.
    Wang Y; Xiao L; Qi Y; Mahmoodinia M; Feng X; Yang J; Zhu YA; Chen D
    Phys Chem Chem Phys; 2019 Sep; 21(35):19269-19280. PubMed ID: 31441913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling ethanol decomposition on transition metals: a combined application of scaling and Brønsted-Evans-Polanyi relations.
    Ferrin P; Simonetti D; Kandoi S; Kunkes E; Dumesic JA; Nørskov JK; Mavrikakis M
    J Am Chem Soc; 2009 Apr; 131(16):5809-15. PubMed ID: 19334787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microkinetic Analysis and Scaling Relations for Catalyst Design.
    Motagamwala AH; Ball MR; Dumesic JA
    Annu Rev Chem Biomol Eng; 2018 Jun; 9():413-450. PubMed ID: 29641915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energies of Adsorbed Catalytic Intermediates on Transition Metal Surfaces: Calorimetric Measurements and Benchmarks for Theory.
    Campbell CT
    Acc Chem Res; 2019 Apr; 52(4):984-993. PubMed ID: 30879291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microkinetic Modeling: A Tool for Rational Catalyst Design.
    Motagamwala AH; Dumesic JA
    Chem Rev; 2021 Jan; 121(2):1049-1076. PubMed ID: 33205961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFT studies of hydrocarbon combustion on metal surfaces.
    Arya M; Mirzaei AA; Davarpanah AM; Barakati SM; Atashi H; Mohsenzadeh A; Bolton K
    J Mol Model; 2018 Feb; 24(2):47. PubMed ID: 29396776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A density functional theory analysis of trends in glycerol decomposition on close-packed transition metal surfaces.
    Liu B; Greeley J
    Phys Chem Chem Phys; 2013 May; 15(17):6475-85. PubMed ID: 23529559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and Assessment of a Criterion for the Application of Brønsted-Evans-Polanyi Relations for Dissociation Catalytic Reactions at Surfaces.
    Ding ZB; Maestri M
    Ind Eng Chem Res; 2019 Jun; 58(23):9864-9874. PubMed ID: 31303692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trends in methanol decomposition on transition metal alloy clusters from scaling and Brønsted-Evans-Polanyi relationships.
    Mehmood F; Rankin RB; Greeley J; Curtiss LA
    Phys Chem Chem Phys; 2012 Jun; 14(24):8644-52. PubMed ID: 22588638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DFT benchmark studies on representative species and poisons of methane steam reforming on Ni(111).
    Yadavalli SS; Jones G; Stamatakis M
    Phys Chem Chem Phys; 2021 Jul; 23(29):15601-15612. PubMed ID: 34259258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Representations of Heterogeneous Carbon Reforming Catalysis Using Machine Learning.
    Li X; Chiong R; Hu Z; Cornforth D; Page AJ
    J Chem Theory Comput; 2019 Dec; 15(12):6882-6894. PubMed ID: 31503488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rationalization of Nonlinear Adsorption Energy-Strain Relations and Brønsted-Evans-Polanyi and Transition State Scaling Relationships under Strain.
    Han J; Sun H; Shi T; Chen ZX
    J Phys Chem Lett; 2021 Dec; 12(47):11578-11584. PubMed ID: 34807621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers.
    Calle-Vallejo F; Loffreda D; Koper MT; Sautet P
    Nat Chem; 2015 May; 7(5):403-10. PubMed ID: 25901818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of Density Functionals for Adsorption Energies on Transition Metal Surfaces.
    Duanmu K; Truhlar DG
    J Chem Theory Comput; 2017 Feb; 13(2):835-842. PubMed ID: 27983852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How molecular is the chemisorptive bond?
    van Santen RA; Tranca I
    Phys Chem Chem Phys; 2016 Aug; 18(31):20868-94. PubMed ID: 27357949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of water and ethanol on noble and transition-metal substrates: a density functional investigation within van der Waals corrections.
    Freire RL; Kiejna A; Da Silva JL
    Phys Chem Chem Phys; 2016 Oct; 18(42):29526-29536. PubMed ID: 27747329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linear Scaling Relationships for Furan Hydrodeoxygenation over Transition Metal and Bimetallic Surfaces.
    Kanchan DR; Banerjee A
    ChemSusChem; 2023 Sep; 16(18):e202300491. PubMed ID: 37314827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BEP relations for N2 dissociation over stepped transition metal and alloy surfaces.
    Munter TR; Bligaard T; Christensen CH; Nørskov JK
    Phys Chem Chem Phys; 2008 Sep; 10(34):5202-6. PubMed ID: 18728861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universality in surface mixing rule of adsorption strength for small adsorbates on binary transition metal alloys.
    Ko J; Kwon H; Kang H; Kim BK; Han JW
    Phys Chem Chem Phys; 2015 Feb; 17(5):3123-30. PubMed ID: 25515855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the Exchange-Correlation Potential on the Transferability of Brønsted-Evans-Polanyi Relationships in Heterogeneous Catalysis.
    Fajín JL; Viñes F; D S Cordeiro MN; Illas F; Gomes JR
    J Chem Theory Comput; 2016 May; 12(5):2121-6. PubMed ID: 27111183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.