BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31442026)

  • 1. Microfluidic Mechanotyping of a Single Cell with Two Consecutive Constrictions of Different Sizes and an Electrical Detection System.
    Sano M; Kaji N; Rowat AC; Yasaki H; Shao L; Odaka H; Yasui T; Higashiyama T; Baba Y
    Anal Chem; 2019 Oct; 91(20):12890-12899. PubMed ID: 31442026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Deformability Cytometry: Rapid, Calibrated Measurements of Cell Mechanical Properties.
    Nyberg KD; Hu KH; Kleinman SH; Khismatullin DB; Butte MJ; Rowat AC
    Biophys J; 2017 Oct; 113(7):1574-1584. PubMed ID: 28978449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing deformability and surface friction of cancer cells.
    Byun S; Son S; Amodei D; Cermak N; Shaw J; Kang JH; Hecht VC; Winslow MM; Jacks T; Mallick P; Manalis SR
    Proc Natl Acad Sci U S A; 2013 May; 110(19):7580-5. PubMed ID: 23610435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The physical origins of transit time measurements for rapid, single cell mechanotyping.
    Nyberg KD; Scott MB; Bruce SL; Gopinath AB; Bikos D; Mason TG; Kim JW; Choi HS; Rowat AC
    Lab Chip; 2016 Aug; 16(17):3330-9. PubMed ID: 27435631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inertial Multi-Force Deformability Cytometry for High-Throughput, High-Accuracy, and High-Applicability Tumor Cell Mechanotyping.
    Chen Y; Ni C; Jiang L; Ni Z; Xiang N
    Small; 2024 Feb; 20(7):e2303962. PubMed ID: 37789502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical measurement of red blood cell deformability on a microfluidic device.
    Zheng Y; Nguyen J; Wang C; Sun Y
    Lab Chip; 2013 Aug; 13(16):3275-83. PubMed ID: 23798004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells.
    Chen J; Zheng Y; Tan Q; Shojaei-Baghini E; Zhang YL; Li J; Prasad P; You L; Wu XY; Sun Y
    Lab Chip; 2011 Sep; 11(18):3174-81. PubMed ID: 21826361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing Deformability and Electrical Impedance of Cancer Cells in a Microfluidic Device.
    Zhou Y; Yang D; Zhou Y; Khoo BL; Han J; Ai Y
    Anal Chem; 2018 Jan; 90(1):912-919. PubMed ID: 29172457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microconstriction arrays for high-throughput quantitative measurements of cell mechanical properties.
    Lange JR; Steinwachs J; Kolb T; Lautscham LA; Harder I; Whyte G; Fabry B
    Biophys J; 2015 Jul; 109(1):26-34. PubMed ID: 26153699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Separation of Circulating Tumor Cells Based on Size and Deformability.
    Park ES; Duffy SP; Ma H
    Methods Mol Biol; 2017; 1634():21-32. PubMed ID: 28819838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical review of single-cell mechanotyping approaches for biomedical applications.
    Chapman M; Rajagopal V; Stewart A; Collins DJ
    Lab Chip; 2024 Jun; 24(12):3036-3063. PubMed ID: 38804123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformability-based cell classification and enrichment using inertial microfluidics.
    Hur SC; Henderson-MacLennan NK; McCabe ER; Di Carlo D
    Lab Chip; 2011 Mar; 11(5):912-20. PubMed ID: 21271000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive strategy for the analysis of acoustic compressibility and optical deformability on single cells.
    Yang T; Bragheri F; Nava G; Chiodi I; Mondello C; Osellame R; Berg-Sørensen K; Cristiani I; Minzioni P
    Sci Rep; 2016 Apr; 6():23946. PubMed ID: 27040456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Microfluidic Sensor for Continuous, in Situ Surface Charge Measurement of Single Cells.
    Ni L; Shaik R; Xu R; Zhang G; Zhe J
    ACS Sens; 2020 Feb; 5(2):527-534. PubMed ID: 31939290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic technique to probe cell deformability.
    Hoelzle DJ; Varghese BA; Chan CK; Rowat AC
    J Vis Exp; 2014 Sep; (91):e51474. PubMed ID: 25226269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic deformability cytometry: A review.
    Chen Y; Guo K; Jiang L; Zhu S; Ni Z; Xiang N
    Talanta; 2023 Jan; 251():123815. PubMed ID: 35952505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidic digital single-cell assay for the evaluation of anticancer drugs.
    Wang Y; Tang X; Feng X; Liu C; Chen P; Chen D; Liu BF
    Anal Bioanal Chem; 2015 Feb; 407(4):1139-48. PubMed ID: 25433683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidics study of intracellular calcium response to mechanical stimulation on single suspension cells.
    Xu T; Yue W; Li CW; Yao X; Yang M
    Lab Chip; 2013 Mar; 13(6):1060-9. PubMed ID: 23403699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry.
    Rosenbluth MJ; Lam WA; Fletcher DA
    Lab Chip; 2008 Jul; 8(7):1062-70. PubMed ID: 18584080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysical phenotyping of single cells using a differential multiconstriction microfluidic device with self-aligned 3D electrodes.
    Yang D; Zhou Y; Zhou Y; Han J; Ai Y
    Biosens Bioelectron; 2019 May; 133():16-23. PubMed ID: 30903937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.