These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 31442040)

  • 1. Improving Predicted Nuclear Magnetic Resonance Chemical Shifts Using the Quasi-Harmonic Approximation.
    McKinley JL; Beran GJO
    J Chem Theory Comput; 2019 Oct; 15(10):5259-5274. PubMed ID: 31442040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Molecular Crystal Properties from First Principles: Finite-Temperature Thermochemistry to NMR Crystallography.
    Beran GJ; Hartman JD; Heit YN
    Acc Chem Res; 2016 Nov; 49(11):2501-2508. PubMed ID: 27754668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced NMR Discrimination of Pharmaceutically Relevant Molecular Crystal Forms through Fragment-Based Ab Initio Chemical Shift Predictions.
    Hartman JD; Day GM; Beran GJ
    Cryst Growth Des; 2016 Nov; 16(11):6479-6493. PubMed ID: 27829821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EFG-CS: Predicting chemical shifts from amino acid sequences with protein structure prediction using machine learning and deep learning models.
    Gu X; Myung Y; Rodrigues CHM; Ascher DB
    Protein Sci; 2024 Aug; 33(8):e5096. PubMed ID: 38979954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fragment-Based Electronic Structure Approach for Computing Nuclear Magnetic Resonance Chemical Shifts in Molecular Crystals.
    Hartman JD; Beran GJ
    J Chem Theory Comput; 2014 Nov; 10(11):4862-72. PubMed ID: 26584373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio thermodynamic properties and their uncertainties for crystalline α-methanol.
    Červinka C; Beran GJO
    Phys Chem Chem Phys; 2017 Nov; 19(44):29940-29953. PubMed ID: 29090305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Powder crystallography of pharmaceutical materials by combined crystal structure prediction and solid-state 1H NMR spectroscopy.
    Baias M; Widdifield CM; Dumez JN; Thompson HP; Cooper TG; Salager E; Bassil S; Stein RS; Lesage A; Day GM; Emsley L
    Phys Chem Chem Phys; 2013 Jun; 15(21):8069-80. PubMed ID: 23503809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein structure refinement using a quantum mechanics-based chemical shielding predictor.
    Bratholm LA; Jensen JH
    Chem Sci; 2017 Mar; 8(3):2061-2072. PubMed ID: 28451325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How important is thermal expansion for predicting molecular crystal structures and thermochemistry at finite temperatures?
    Heit YN; Beran GJ
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2016 Aug; 72(Pt 4):514-29. PubMed ID: 27484373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmark fragment-based (1)H, (13)C, (15)N and (17)O chemical shift predictions in molecular crystals.
    Hartman JD; Kudla RA; Day GM; Mueller LJ; Beran GJ
    Phys Chem Chem Phys; 2016 Aug; 18(31):21686-709. PubMed ID: 27431490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On how differently the quasi-harmonic approximation works for two isostructural crystals: thermal properties of periclase and lime.
    Erba A; Shahrokhi M; Moradian R; Dovesi R
    J Chem Phys; 2015 Jan; 142(4):044114. PubMed ID: 25637976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying pragmatic quasi-harmonic electronic structure approaches for modeling molecular crystal thermal expansion.
    McKinley JL; Beran GJO
    Faraday Discuss; 2018 Oct; 211(0):181-207. PubMed ID: 30027972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fragment-based (13)C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods.
    Hartman JD; Monaco S; Schatschneider B; Beran GJ
    J Chem Phys; 2015 Sep; 143(10):102809. PubMed ID: 26374002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-state NMR spectra and long intradimer bonds in the pi-[TCNE]22- dianion.
    Strohmeier M; Barich DH; Grant DM; Miller JS; Pugmire RJ; Simons J
    J Phys Chem A; 2006 Jun; 110(25):7962-9. PubMed ID: 16789786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effect of Molecular Conformation on the Accuracy of Theoretical (1)H and (13)C Chemical Shifts Calculated by Ab Initio Methods for Metabolic Mixture Analysis.
    Chikayama E; Shimbo Y; Komatsu K; Kikuchi J
    J Phys Chem B; 2016 Apr; 120(14):3479-87. PubMed ID: 26963288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Machine Learning Model of Chemical Shifts for Chemically and Structurally Diverse Molecular Solids.
    Cordova M; Engel EA; Stefaniuk A; Paruzzo F; Hofstetter A; Ceriotti M; Emsley L
    J Phys Chem C Nanomater Interfaces; 2022 Oct; 126(39):16710-16720. PubMed ID: 36237276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Bayesian approach to NMR crystal structure determination.
    Engel EA; Anelli A; Hofstetter A; Paruzzo F; Emsley L; Ceriotti M
    Phys Chem Chem Phys; 2019 Nov; 21(42):23385-23400. PubMed ID: 31631196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate 13-C and 15-N molecular crystal chemical shielding tensors from fragment-based electronic structure theory.
    Hartman JD; Beran GJO
    Solid State Nucl Magn Reson; 2018 Dec; 96():10-18. PubMed ID: 30273904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lattice thermal expansion and anisotropic displacements in urea, bromomalonic aldehyde, pentachloropyridine, and naphthalene.
    George J; Wang R; Englert U; Dronskowski R
    J Chem Phys; 2017 Aug; 147(7):074112. PubMed ID: 28830176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal properties of molecular crystals through dispersion-corrected quasi-harmonic ab initio calculations: the case of urea.
    Erba A; Maul J; Civalleri B
    Chem Commun (Camb); 2016 Jan; 52(9):1820-3. PubMed ID: 26670006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.