These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 31442040)

  • 21. Tryptophan chemical shift in peptides and proteins: a solid state carbon-13 nuclear magnetic resonance spectroscopic and quantum chemical investigation.
    Sun H; Oldfield E
    J Am Chem Soc; 2004 Apr; 126(14):4726-34. PubMed ID: 15070392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational studies of 13C NMR chemical shifts of saccharides.
    Taubert S; Konschin H; Sundholm D
    Phys Chem Chem Phys; 2005 Jul; 7(13):2561-9. PubMed ID: 16189565
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Probing multiple effects on 15N, 13C alpha, 13C beta, and 13C' chemical shifts in peptides using density functional theory.
    Xu XP; Case DA
    Biopolymers; 2002 Dec; 65(6):408-23. PubMed ID: 12434429
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time averaging of NMR chemical shifts in the MLF peptide in the solid state.
    De Gortari I; Portella G; Salvatella X; Bajaj VS; van der Wel PC; Yates JR; Segall MD; Pickard CJ; Payne MC; Vendruscolo M
    J Am Chem Soc; 2010 May; 132(17):5993-6000. PubMed ID: 20387894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of structural differences on the NMR chemical shifts in isostructural dipeptides.
    Altheimer BD; Mehta MA
    J Phys Chem A; 2014 Apr; 118(14):2618-28. PubMed ID: 24654604
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accurate prediction of chemical shifts for aqueous protein structure on "Real World" data.
    Li J; Bennett KC; Liu Y; Martin MV; Head-Gordon T
    Chem Sci; 2020 Mar; 11(12):3180-3191. PubMed ID: 34122823
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intermolecular anharmonicity in molecular crystals: interplay between experimental low-frequency dynamics and quantum quasi-harmonic simulations of solid purine.
    Ruggiero MT; Zeitler JA; Erba A
    Chem Commun (Camb); 2017 Mar; 53(26):3781-3784. PubMed ID: 28304040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins.
    Karp JM; Eryilmaz E; Cowburn D
    J Biomol NMR; 2015 Jan; 61(1):35-45. PubMed ID: 25416617
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of proton chemical shifts in RNA. Their use in structure refinement and validation.
    Cromsigt JA; Hilbers CW; Wijmenga SS
    J Biomol NMR; 2001 Sep; 21(1):11-29. PubMed ID: 11693565
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The prediction of (1)H chemical shifts in amines: a semiempirical and ab initio investigation.
    Basso EA; Gauze GF; Abraham RJ
    Magn Reson Chem; 2007 Sep; 45(9):749-57. PubMed ID: 17640030
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.
    Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP
    J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systematic investigation of DFT-GIAO
    Xin D; Sader CA; Fischer U; Wagner K; Jones PJ; Xing M; Fandrick KR; Gonnella NC
    Org Biomol Chem; 2017 Jan; 15(4):928-936. PubMed ID: 28050610
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calculation of 13C chemical shifts in rna nucleosides: structure-13C chemical shift relationships.
    Rossi P; Harbison GS
    J Magn Reson; 2001 Jul; 151(1):1-8. PubMed ID: 11444931
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Active site contacts in the purine nucleoside phosphorylase--hypoxanthine complex by NMR and ab initio calculations.
    Deng H; Cahill SM; Abad JL; Lewandowicz A; Callender RH; Schramm VL; Jones RA
    Biochemistry; 2004 Dec; 43(50):15966-74. PubMed ID: 15595853
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nuclear quantum effect with pure anharmonicity and the anomalous thermal expansion of silicon.
    Kim DS; Hellman O; Herriman J; Smith HL; Lin JYY; Shulumba N; Niedziela JL; Li CW; Abernathy DL; Fultz B
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):1992-1997. PubMed ID: 29440490
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State (17)O NMR Chemical Shifts in Various Biologically Relevant Oxygen-Containing Compounds.
    Rorick A; Michael MA; Yang L; Zhang Y
    J Phys Chem B; 2015 Sep; 119(35):11618-25. PubMed ID: 26274812
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards reliable ab initio sublimation pressures for organic molecular crystals - are we there yet?
    Červinka C; Beran GJO
    Phys Chem Chem Phys; 2019 Jul; 21(27):14799-14810. PubMed ID: 31225538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved Quantum Chemical NMR Chemical Shift Prediction of Metabolites in Aqueous Solution toward the Validation of Unknowns.
    Hoffmann F; Li DW; Sebastiani D; Brüschweiler R
    J Phys Chem A; 2017 Apr; 121(16):3071-3078. PubMed ID: 28388058
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Empirical and DFT GIAO quantum-mechanical methods of (13)C chemical shifts prediction: competitors or collaborators?
    Elyashberg M; Blinov K; Smurnyy Y; Churanova T; Williams A
    Magn Reson Chem; 2010 Mar; 48(3):219-29. PubMed ID: 20108257
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 1H nuclear magnetic resonance studies of hen lysozyme-N-acetylglucosamine oligosaccharide complexes in solution. Application of chemical shifts for the comparison of conformational changes in solution and in the crystal.
    Lumb KJ; Cheetham JC; Dobson CM
    J Mol Biol; 1994 Jan; 235(3):1072-87. PubMed ID: 8289309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.