These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31442044)

  • 1.
    Dasgupta S; Rana B; Herbert JM
    J Phys Chem B; 2019 Sep; 123(38):8074-8085. PubMed ID: 31442044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating Simple
    Park SJ; Schwartz BJ
    J Phys Chem B; 2020 Oct; 124(43):9592-9603. PubMed ID: 33078930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure of the hydrated electron. Part 2. A mixed quantum/classical molecular dynamics embedded cluster density functional theory: single-excitation configuration interaction study.
    Shkrob IA; Glover WJ; Larsen RE; Schwartz BJ
    J Phys Chem A; 2007 Jun; 111(24):5232-43. PubMed ID: 17530823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the Temperature Dependence and Finite Size Effects in Ab Initio MD Simulations of the Hydrated Electron.
    Park SJ; Schwartz BJ
    J Chem Theory Comput; 2022 Aug; 18(8):4973-4982. PubMed ID: 35834750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependence of the hydrated electron's excited-state relaxation. I. Simulation predictions of resonance Raman and pump-probe transient absorption spectra of cavity and non-cavity models.
    Zho CC; Farr EP; Glover WJ; Schwartz BJ
    J Chem Phys; 2017 Aug; 147(7):074503. PubMed ID: 28830174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance Raman and temperature-dependent electronic absorption spectra of cavity and noncavity models of the hydrated electron.
    Casey JR; Larsen RE; Schwartz BJ
    Proc Natl Acad Sci U S A; 2013 Feb; 110(8):2712-7. PubMed ID: 23382233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics.
    Marsalek O; Uhlig F; VandeVondele J; Jungwirth P
    Acc Chem Res; 2012 Jan; 45(1):23-32. PubMed ID: 21899274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Fluxional Nature of the Hydrated Electron: Energy and Entropy Contributions to Aqueous Electron Free Energies.
    Glover WJ; Schwartz BJ
    J Chem Theory Comput; 2020 Feb; 16(2):1263-1270. PubMed ID: 31914315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. To be or not to be in a cavity: the hydrated electron dilemma.
    Casey JR; Kahros A; Schwartz BJ
    J Phys Chem B; 2013 Nov; 117(46):14173-82. PubMed ID: 24160853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the aqueous electron.
    Herbert JM
    Phys Chem Chem Phys; 2019 Oct; 21(37):20538-20565. PubMed ID: 31498344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature dependence of the hydrated electron's excited-state relaxation. II. Elucidating the relaxation mechanism through ultrafast transient absorption and stimulated emission spectroscopy.
    Farr EP; Zho CC; Challa JR; Schwartz BJ
    J Chem Phys; 2017 Aug; 147(7):074504. PubMed ID: 28830177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytic gradient for the QM/MM-Ewald method using charges derived from the electrostatic potential: Theory, implementation, and application to ab initio molecular dynamics simulation of the aqueous electron.
    Holden ZC; Rana B; Herbert JM
    J Chem Phys; 2019 Apr; 150(14):144115. PubMed ID: 30981237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible H2O2 in water: electronic structure from photoelectron spectroscopy and ab initio calculations.
    Thürmer S; Seidel R; Winter B; Ončák M; Slavíček P
    J Phys Chem A; 2011 Jun; 115(23):6239-49. PubMed ID: 21332235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Hydrated Electron at the Surface of Neat Liquid Water Appears To Be Indistinguishable from the Bulk Species.
    Coons MP; You ZQ; Herbert JM
    J Am Chem Soc; 2016 Aug; 138(34):10879-86. PubMed ID: 27505354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A one-electron model for the aqueous electron that includes many-body electron-water polarization: Bulk equilibrium structure, vertical electron binding energy, and optical absorption spectrum.
    Jacobson LD; Herbert JM
    J Chem Phys; 2010 Oct; 133(15):154506. PubMed ID: 20969402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-Range Electron Correlation Stabilizes Noncavity Solvation of the Hydrated Electron.
    Glover WJ; Schwartz BJ
    J Chem Theory Comput; 2016 Oct; 12(10):5117-5131. PubMed ID: 27576177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the aqueous solvated electron from resonance Raman spectroscopy: lessons from isotopic mixtures.
    Tauber MJ; Mathies RA
    J Am Chem Soc; 2003 Feb; 125(5):1394-402. PubMed ID: 12553843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonadiabatic molecular dynamics simulations of correlated electrons in solution. 2. A prediction for the observation of hydrated dielectrons with pump-probe spectroscopy.
    Larsen RE; Schwartz BJ
    J Phys Chem B; 2006 May; 110(19):9692-7. PubMed ID: 16686520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the Complex Nature of the Hydrated Electron.
    Uhlig F; Marsalek O; Jungwirth P
    J Phys Chem Lett; 2012 Oct; 3(20):3071-5. PubMed ID: 26292252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the aqueous electron: assessment of one-electron pseudopotential models in comparison to experimental data and time-dependent density functional theory.
    Herbert JM; Jacobson LD
    J Phys Chem A; 2011 Dec; 115(50):14470-83. PubMed ID: 22032635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.