These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 3144246)

  • 1. Metabolism of volatile chlorinated aliphatic hydrocarbons by Pseudomonas fluorescens.
    Vandenbergh PA; Kunka BS
    Appl Environ Microbiol; 1988 Oct; 54(10):2578-9. PubMed ID: 3144246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate interactions in dehalogenation of 1,2-dichloroethane, 1,2-dichloropropane, and 1,1,2-trichloroethane mixtures by Dehalogenimonas spp.
    Dillehay JL; Bowman KS; Yan J; Rainey FA; Moe WM
    Biodegradation; 2014 Apr; 25(2):301-12. PubMed ID: 23990262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic and inhibition studies for the aerobic cometabolism of 1,1,1-trichloroethane, 1,1-dichloroethylene, and 1,1-dichloroethane by a butane-grown mixed culture.
    Kim Y; Arp DJ; Semprini L
    Biotechnol Bioeng; 2002 Dec; 80(5):498-508. PubMed ID: 12355460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial growth on 1,2-dichloroethane.
    Stucki G; Krebser U; Leisinger T
    Experientia; 1983 Nov; 39(11):1271-3. PubMed ID: 6641901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Difference in uptake, elimination, and metabolism in exposure to trichloroethylene, 1,1,1-trichloroethane and tetrachloroethylene.
    Monster AC
    Int Arch Occup Environ Health; 1979 Jan; 42(3-4):311-7. PubMed ID: 422272
    [No Abstract]   [Full Text] [Related]  

  • 6. Estimation of individual uptake of trichloroethylene, 1,1,1-trichloroethane and tetrachloroethylene from biological parameters.
    Monster AC; Houtkooper JM
    Int Arch Occup Environ Health; 1979 Jan; 42(3-4):319-23. PubMed ID: 422273
    [No Abstract]   [Full Text] [Related]  

  • 7. [Behavior of chlorinated solvents during mechanical and biological sewage treatment].
    Schöler HF; Schlolaut KH
    Zentralbl Bakteriol Mikrobiol Hyg B Umwelthyg Krankenhaushyg Arbeitshyg Prav Med; 1986 Apr; 182(2):193-5. PubMed ID: 3087100
    [No Abstract]   [Full Text] [Related]  

  • 8. Co-metabolic degradation of chlorinated hydrocarbons by Pseudomonas sp. strain DCA1.
    Hage JC; Kiestra FD; Hartmans S
    Appl Microbiol Biotechnol; 2001 Nov; 57(4):548-54. PubMed ID: 11762603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of chloroethanes by rat liver nuclear cytochrome P-450.
    Casciola LA; Ivanetich KM
    Carcinogenesis; 1984 May; 5(5):543-8. PubMed ID: 6722974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Chlorinate solvents natural biodegradation in shallow groundwater].
    He JT; Li Y; Liu S; Chen HH
    Huan Jing Ke Xue; 2005 Mar; 26(2):121-5. PubMed ID: 16004313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of biotransformation of 1,1,1-trichloroethane by Clostridium sp. strain TCAIIB.
    Gälli R; McCarty PL
    Appl Environ Microbiol; 1989 Apr; 55(4):845-51. PubMed ID: 2729986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlorinated aliphatic hydrocarbons promote lipid peroxidation in vascular cells.
    Tse SY; Mak IT; Weglicki WB; Dickens BF
    J Toxicol Environ Health; 1990 Nov; 31(3):217-26. PubMed ID: 2231779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlorinated aliphatic hydrocarbons used in the foods industry: the comparative pharmacokinetics of methylene chloride, 1,2 dichloroethane, chloroform and trichloroethylene after I.V. administration in the rat.
    Withey JR; Collins BT
    J Environ Pathol Toxicol; 1980; 3(5-6):313-32. PubMed ID: 7441087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively.
    Yee DC; Maynard JA; Wood TK
    Appl Environ Microbiol; 1998 Jan; 64(1):112-8. PubMed ID: 9435067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dehalogenimonas formicexedens sp. nov., a chlorinated alkane-respiring bacterium isolated from contaminated groundwater.
    Key TA; Bowman KS; Lee I; Chun J; Albuquerque L; da Costa MS; Rainey FA; Moe WM
    Int J Syst Evol Microbiol; 2017 May; 67(5):1366-1373. PubMed ID: 28126048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic adaptation of bacteria to halogenated aliphatic compounds.
    Janssen DB; van der Ploeg JR; Pries F
    Environ Health Perspect; 1995 Jun; 103 Suppl 5(Suppl 5):29-32. PubMed ID: 8565904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of chlorinated aliphatics and aromatic compounds in total-recycle expanded-bed biofilm reactors.
    Korde VM; Phelps TJ; Bienkowski PR; White DC
    Appl Biochem Biotechnol; 1993; 39-40():631-41. PubMed ID: 8323267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic dechlorination of trichloroethene, tetrachloroethene and 1,2-dichloroethane by an acetogenic mixed culture in a fixed-bed reactor.
    Wild AP; Winkelbauer W; Leisinger T
    Biodegradation; 1995; 6(4):309-18. PubMed ID: 8580644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reductive dechlorination of 1,2-dichloroethane in the presence of chloroethenes and 1,2-dichloropropane as co-contaminants.
    Peng P; Schneidewind U; Haest PJ; Bosma TNP; Danko AS; Smidt H; Atashgahi S
    Appl Microbiol Biotechnol; 2019 Aug; 103(16):6837-6849. PubMed ID: 31250061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of hydrogen by Clostridium species in the presence of chlorinated solvents.
    Bowman KS; Rainey FA; Moe WM
    FEMS Microbiol Lett; 2009 Jan; 290(2):188-94. PubMed ID: 19054075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.