BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 31442505)

  • 1. In vitro and in silico analysis of novel astaxanthin-s-allyl cysteine as an inhibitor of butyrylcholinesterase and various globular forms of acetylcholinesterases.
    Sakayanathan P; Loganathan C; Kandasamy S; Ramanna RV; Poomani K; Thayumanavan P
    Int J Biol Macromol; 2019 Nov; 140():1147-1157. PubMed ID: 31442505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico, theoretical biointerface analysis and in vitro kinetic analysis of amine compounds interaction with acetylcholinesterase and butyrylcholinesterase.
    Kandasamy S; Loganathan C; Sakayanathan P; Karthikeyan S; Stephen AD; Marimuthu DK; Ravichandran S; Sivalingam V; Thayumanavan P
    Int J Biol Macromol; 2021 Aug; 185():750-760. PubMed ID: 34216669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of two different cholinesterases by tacrine.
    Ahmed M; Rocha JB; Corrêa M; Mazzanti CM; Zanin RF; Morsch AL; Morsch VM; Schetinger MR
    Chem Biol Interact; 2006 Aug; 162(2):165-71. PubMed ID: 16860785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Piperazine-2-carboxylic acid derivatives as MTDLs anti-Alzheimer agents: Anticholinesterase activity, mechanistic aspect, and molecular modeling studies.
    Soliman AM; Abd El-Wahab HAA; Akincioglu H; Gülçin İ; Omar FA
    Bioorg Chem; 2024 Jan; 142():106916. PubMed ID: 37913584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aromatic amino-acid residues at the active and peripheral anionic sites control the binding of E2020 (Aricept) to cholinesterases.
    Saxena A; Fedorko JM; Vinayaka CR; Medhekar R; Radić Z; Taylor P; Lockridge O; Doctor BP
    Eur J Biochem; 2003 Nov; 270(22):4447-58. PubMed ID: 14622273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of methoxy-naphthyl linked N-(1-benzylpiperidine) benzamide as a blood-brain permeable dual inhibitor of acetylcholinesterase and butyrylcholinesterase.
    Abdullaha M; Nuthakki VK; Bharate SB
    Eur J Med Chem; 2020 Dec; 207():112761. PubMed ID: 32942070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological interaction of newly synthesized astaxanthin-s-allyl cysteine biconjugate with Saccharomyces cerevisiae and mammalian α-glucosidase: In vitro kinetics and in silico docking analysis.
    Sakayanathan P; Loganathan C; Iruthayaraj A; Periyasamy P; Poomani K; Periasamy V; Thayumanavan P
    Int J Biol Macromol; 2018 Oct; 118(Pt A):252-262. PubMed ID: 29885400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in acetylcholinesterase and butyrylcholinesterase in Alzheimer's disease resemble embryonic development--a study of molecular forms.
    Arendt T; Brückner MK; Lange M; Bigl V
    Neurochem Int; 1992 Oct; 21(3):381-96. PubMed ID: 1303164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, synthesis and biological evaluation of novel carbamates as potential inhibitors of acetylcholinesterase and butyrylcholinesterase.
    Wu J; Pistolozzi M; Liu S; Tan W
    Bioorg Med Chem; 2020 Mar; 28(5):115324. PubMed ID: 32008882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular-docking-guided design and synthesis of new IAA-tacrine hybrids as multifunctional AChE/BChE inhibitors.
    Cheng ZQ; Zhu KK; Zhang J; Song JL; Muehlmann LA; Jiang CS; Liu CL; Zhang H
    Bioorg Chem; 2019 Mar; 83():277-288. PubMed ID: 30391700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular forms of acetylcholinesterase and butyrylcholinesterase in the aged human central nervous system.
    Atack JR; Perry EK; Bonham JR; Candy JM; Perry RH
    J Neurochem; 1986 Jul; 47(1):263-77. PubMed ID: 3711902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1,2,3,4-Tetrahydrobenzo[h][1,6]naphthyridines as a new family of potent peripheral-to-midgorge-site inhibitors of acetylcholinesterase: synthesis, pharmacological evaluation and mechanistic studies.
    Di Pietro O; Viayna E; Vicente-García E; Bartolini M; Ramón R; Juárez-Jiménez J; Clos MV; Pérez B; Andrisano V; Luque FJ; Lavilla R; Muñoz-Torrero D
    Eur J Med Chem; 2014 Feb; 73():141-52. PubMed ID: 24389509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, molecular docking and biological evaluation of N,N-disubstituted 2-aminothiazolines as a new class of butyrylcholinesterase and carboxylesterase inhibitors.
    Makhaeva GF; Boltneva NP; Lushchekina SV; Serebryakova OG; Stupina TS; Terentiev AA; Serkov IV; Proshin AN; Bachurin SO; Richardson RJ
    Bioorg Med Chem; 2016 Mar; 24(5):1050-62. PubMed ID: 26827140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural aspects of 4-aminoquinolines as reversible inhibitors of human acetylcholinesterase and butyrylcholinesterase.
    Bosak A; Opsenica DM; Šinko G; Zlatar M; Kovarik Z
    Chem Biol Interact; 2019 Aug; 308():101-109. PubMed ID: 31100281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and biological evaluation of indoloquinoline alkaloid cryptolepine and its bromo-derivative as dual cholinesterase inhibitors.
    Nuthakki VK; Mudududdla R; Sharma A; Kumar A; Bharate SB
    Bioorg Chem; 2019 Sep; 90():103062. PubMed ID: 31220673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of β-site amyloid precursor protein cleaving enzyme 1 and cholinesterases by pterosins via a specific structure-activity relationship with a strong BBB permeability.
    Jannat S; Balupuri A; Ali MY; Hong SS; Choi CW; Choi YH; Ku JM; Kim WJ; Leem JY; Kim JE; Shrestha AC; Ham HN; Lee KH; Kim DM; Kang NS; Park GH
    Exp Mol Med; 2019 Feb; 51(2):1-18. PubMed ID: 30755593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular modeling and in vitro approaches towards cholinesterase inhibitory effect of some natural xanthohumol, naringenin, and acyl phloroglucinol derivatives.
    Orhan IE; Jedrejek D; Senol FS; Salmas RE; Durdagi S; Kowalska I; Pecio L; Oleszek W
    Phytomedicine; 2018 Mar; 42():25-33. PubMed ID: 29655693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quinoxaline derivatives: novel and selective butyrylcholinesterase inhibitors.
    Zeb A; Hameed A; Khan L; Khan I; Dalvandi K; Choudhary MI; Basha FZ
    Med Chem; 2014; 10(7):724-9. PubMed ID: 24875826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and Computational Analysis Identify Statins as Selective Inhibitors of Human Butyrylcholinesterase.
    Atay MS; Sari S; Bodur E
    Protein J; 2023 Apr; 42(2):104-111. PubMed ID: 36648628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction study of two diterpenes, cryptotanshinone and dihydrotanshinone, to human acetylcholinesterase and butyrylcholinesterase by molecular docking and kinetic analysis.
    Wong KK; Ngo JC; Liu S; Lin HQ; Hu C; Shaw PC; Wan DC
    Chem Biol Interact; 2010 Sep; 187(1-3):335-9. PubMed ID: 20350537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.