BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

595 related articles for article (PubMed ID: 31442579)

  • 1. Regulation of intrinsic excitability: Roles for learning and memory, aging and Alzheimer's disease, and genetic diversity.
    Dunn AR; Kaczorowski CC
    Neurobiol Learn Mem; 2019 Oct; 164():107069. PubMed ID: 31442579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning to learn - intrinsic plasticity as a metaplasticity mechanism for memory formation.
    Sehgal M; Song C; Ehlers VL; Moyer JR
    Neurobiol Learn Mem; 2013 Oct; 105():186-99. PubMed ID: 23871744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacological and molecular enhancement of learning in aging and Alzheimer's disease.
    Disterhoft JF; Oh MM
    J Physiol Paris; 2006; 99(2-3):180-92. PubMed ID: 16458491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased neuronal excitability, synaptic plasticity, and learning in aged Kvbeta1.1 knockout mice.
    Murphy GG; Fedorov NB; Giese KP; Ohno M; Friedman E; Chen R; Silva AJ
    Curr Biol; 2004 Nov; 14(21):1907-15. PubMed ID: 15530391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of intrinsic excitability as a function of learning within the fear conditioning circuit.
    Yousuf H; Ehlers VL; Sehgal M; Song C; Moyer JR
    Neurobiol Learn Mem; 2020 Jan; 167():107132. PubMed ID: 31821881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of intrinsic excitability in the evolution of memory: Significance in memory allocation, consolidation, and updating.
    Chen L; Cummings KA; Mau W; Zaki Y; Dong Z; Rabinowitz S; Clem RL; Shuman T; Cai DJ
    Neurobiol Learn Mem; 2020 Sep; 173():107266. PubMed ID: 32512183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hippocampal neurogenesis: Learning to remember.
    Lazarov O; Hollands C
    Prog Neurobiol; 2016; 138-140():1-18. PubMed ID: 26855369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning, aging and intrinsic neuronal plasticity.
    Disterhoft JF; Oh MM
    Trends Neurosci; 2006 Oct; 29(10):587-99. PubMed ID: 16942805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related biophysical alterations of hippocampal pyramidal neurons: implications for learning and memory.
    Wu WW; Oh MM; Disterhoft JF
    Ageing Res Rev; 2002 Apr; 1(2):181-207. PubMed ID: 12039438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasticity of intrinsic neuronal excitability.
    Debanne D; Inglebert Y; Russier M
    Curr Opin Neurobiol; 2019 Feb; 54():73-82. PubMed ID: 30243042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local Inhibition of PERK Enhances Memory and Reverses Age-Related Deterioration of Cognitive and Neuronal Properties.
    Sharma V; Ounallah-Saad H; Chakraborty D; Hleihil M; Sood R; Barrera I; Edry E; Kolatt Chandran S; Ben Tabou de Leon S; Kaphzan H; Rosenblum K
    J Neurosci; 2018 Jan; 38(3):648-658. PubMed ID: 29196323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term plasticity of intrinsic excitability: learning rules and mechanisms.
    Daoudal G; Debanne D
    Learn Mem; 2003; 10(6):456-65. PubMed ID: 14657257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural ECM molecules in synaptic plasticity, learning, and memory.
    Senkov O; Andjus P; Radenovic L; Soriano E; Dityatev A
    Prog Brain Res; 2014; 214():53-80. PubMed ID: 25410353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The contribution of ion channels in input-output plasticity.
    Debanne D; Russier M
    Neurobiol Learn Mem; 2019 Dec; 166():107095. PubMed ID: 31539624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium signaling, excitability, and synaptic plasticity defects in a mouse model of Alzheimer's disease.
    Zhang H; Liu J; Sun S; Pchitskaya E; Popugaeva E; Bezprozvanny I
    J Alzheimers Dis; 2015; 45(2):561-80. PubMed ID: 25589721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic Mechanisms in Memory and Cognitive Decline Associated with Aging and Alzheimer's Disease.
    Maity S; Farrell K; Navabpour S; Narayanan SN; Jarome TJ
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance.
    Su HM
    J Nutr Biochem; 2010 May; 21(5):364-73. PubMed ID: 20233652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of forebrain cholinergic systems in learning and memory: relevance to the cognitive deficits of aging and Alzheimer's dementia.
    Dunnett SB; Fibiger HC
    Prog Brain Res; 1993; 98():413-20. PubMed ID: 8248529
    [No Abstract]   [Full Text] [Related]  

  • 19. Hippocampal gene expression patterns linked to late-life physical activity oppose age and AD-related transcriptional decline.
    Berchtold NC; Prieto GA; Phelan M; Gillen DL; Baldi P; Bennett DA; Buchman AS; Cotman CW
    Neurobiol Aging; 2019 Jun; 78():142-154. PubMed ID: 30927700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory.
    Turner PR; O'Connor K; Tate WP; Abraham WC
    Prog Neurobiol; 2003 May; 70(1):1-32. PubMed ID: 12927332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.