These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 31442702)

  • 1. A simple and rapid sensing strategy based on structure-switching signaling aptamers for the sensitive detection of chloramphenicol.
    Ma X; Li H; Qiao S; Huang C; Liu Q; Shen X; Geng Y; Xu W; Sun C
    Food Chem; 2020 Jan; 302():125359. PubMed ID: 31442702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sensitive sandwich-type electrochemical aptasensing platform based on Ti
    Yao X; Yang L; Yang S; Shen J; Huo D; Fa H; Hou C; Yang M
    Anal Methods; 2024 Jun; 16(24):3867-3877. PubMed ID: 38828675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fluorescent aptasensor for enzyme-free and sensitive detection of kanamycin based on entropy-driven strand displacement reaction.
    Xie L; Fan C; Liu Y; Chen Q; Chen X
    Anal Chim Acta; 2024 Jun; 1308():342659. PubMed ID: 38740459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition and detection of histamine in foods using aptamer modified fluorescence polymer dots sensors.
    Wu G; Ding Z; Dou X; Chen Z; Xie J
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Sep; 317():124452. PubMed ID: 38761559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a highly sensitive ampicillin sensor utilizing functionalized aptamers.
    Ren L; Ma S; Li C; Wang D; Zhang P; Wang L; Qin Z; Jiang L
    Anal Methods; 2024 Jun; 16(22):3522-3529. PubMed ID: 38775028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fluorescence aptamer sensor utilizing WS
    Qin G; Li H; He J; Wang H; Chen Y; Lao S; Cheng L; Lu W; Luo L; Tang L; Mo R; Wei Y; Zhou Q
    Anal Methods; 2024 Jul; 16(28):4873-4879. PubMed ID: 38973381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual emitting aggregation-induced electrochemiluminescence from tetrastyrene derivative for chloramphenicol detection.
    Chen X; Zhao J; Wang Y; Yuan R; Chen S
    Food Chem; 2024 Nov; 457():140100. PubMed ID: 38901352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct detection of adenosine in undiluted serum using a luminescent aptamer sensor attached to a terbium complex.
    Li LL; Ge P; Selvin PR; Lu Y
    Anal Chem; 2012 Sep; 84(18):7852-6. PubMed ID: 22894546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Aptamer Beacons and Their Applications in Sensing, Imaging, and Diagnostics.
    Moutsiopoulou A; Broyles D; Dikici E; Daunert S; Deo SK
    Small; 2019 Aug; 15(35):e1902248. PubMed ID: 31313884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplified detection of cocaine based on strand-displacement polymerization and fluorescence resonance energy transfer.
    Huang J; Chen Y; Yang L; Zhu Z; Zhu G; Yang X; Wang K; Tan W
    Biosens Bioelectron; 2011 Oct; 28(1):450-3. PubMed ID: 21802274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A enzyme-free fluorescence quenching sensor for amplified detection of kanamycin in milk based on competitive triggering strategies.
    Bao Y; Sang Y; Yan X; Hu M; Wang N; Dong Y; Wang L
    RSC Adv; 2024 Jun; 14(27):19076-19082. PubMed ID: 38873552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple and fast one-step FRET assay of therapeutic mAb bevacizumab using anti-idiotype DNA aptamer for process analytical technology.
    Yamada T; Tsukakoshi K; Furusho A; Sugiyama E; Mizuno H; Hayashi H; Yamano T; Kumobayashi H; Hasebe T; Ikebukuro K; Toyo'oka T; Todoroki K
    Talanta; 2024 Sep; 277():126349. PubMed ID: 38852342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aptamer-modified paper-based analytical devices for the detection of food hazards: Emerging applications and future perspective.
    Qin M; Khan IM; Ding N; Qi S; Dong X; Zhang Y; Wang Z
    Biotechnol Adv; 2024; 73():108368. PubMed ID: 38692442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly sensitive antibiotic sensing based on optical weak value amplification: A case study of chloramphenicol.
    Meng L; Zhang L; Liang G; Wang B; Xu Y; Li H; Song Z; Yan H; Guo C; Guan T; He Y
    Food Chem; 2024 Nov; 458():140184. PubMed ID: 38968708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of MXene-Based Multiporous Nanosheet Stacking Structures Integrating Multiple Synergistic SERS Enhancements for Ultrasensitive Detection of Chloramphenicol.
    Peng Y; Yang L; Li Y; Zhang W; Xu M; Lin C; Liu J; Huang Z; Yang Y
    JACS Au; 2024 Feb; 4(2):730-743. PubMed ID: 38425902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aptamer Sensors for the Detection of Antibiotic Residues- A Mini-Review.
    Liang G; Song L; Gao Y; Wu K; Guo R; Chen R; Zhen J; Pan L
    Toxics; 2023 Jun; 11(6):. PubMed ID: 37368613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Sensitive Determination of Antibiotic Residues in Aquatic Products by High-Performance Liquid Chromatography-Tandem Mass Spectrometry.
    Ye H; Li S; Xi Y; Shi Y; Shang X; Huang D
    Antibiotics (Basel); 2022 Oct; 11(10):. PubMed ID: 36290084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering constructed of high selectivity dexamethasone aptamer based on truncation and mutation technology.
    Qin Y; Qin Y; Bubiajiaer H; Chen F; Yao J; Zhang M
    Front Bioeng Biotechnol; 2022; 10():994711. PubMed ID: 36177181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Simple Structure-Switch Aptasensor Using Label-Free Aptamer for Fluorescence Detection of Aflatoxin B1.
    Wang C; Yu H; Zhao Q
    Molecules; 2022 Jul; 27(13):. PubMed ID: 35807501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sandwich Fluorescence Detection of Foodborne Pathogen
    Du H; Ping T; Wu W; Yang Q
    Foods; 2022 Mar; 11(7):. PubMed ID: 35407032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.