These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 31442721)

  • 21. Soil phosphorus landscape models for precision soil conservation.
    Hong J; Grunwald S; Vasques GM
    J Environ Qual; 2015 May; 44(3):739-53. PubMed ID: 26024255
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Factors affecting paddy soil arsenic concentration in Bangladesh: prediction and uncertainty of geostatistical risk mapping.
    Ahmed ZU; Panaullah GM; DeGloria SD; Duxbury JM
    Sci Total Environ; 2011 Dec; 412-413():324-35. PubMed ID: 22055452
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Geostatistical prediction of water lead levels in Flint, Michigan: A multivariate approach.
    Goovaerts P
    Sci Total Environ; 2019 Jan; 647():1294-1304. PubMed ID: 30180337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved hydrological model parametrization for climate change impact assessment under data scarcity - The potential of field monitoring techniques and geostatistics.
    Meyer S; Blaschek M; Duttmann R; Ludwig R
    Sci Total Environ; 2016 Feb; 543(Pt B):906-23. PubMed ID: 26250866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatial variability of soil carbon stock in the Urucu river basin, Central Amazon-Brazil.
    Ceddia MB; Villela AL; Pinheiro ÉF; Wendroth O
    Sci Total Environ; 2015 Sep; 526():58-69. PubMed ID: 25918893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Groundwater drawdown drives ecophysiological adjustments of woody vegetation in a semi-arid coastal ecosystem.
    Antunes C; Chozas S; West J; Zunzunegui M; Diaz Barradas MC; Vieira S; Máguas C
    Glob Chang Biol; 2018 Oct; 24(10):4894-4908. PubMed ID: 30030867
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils.
    Juang KW; Chen YS; Lee DY
    Environ Pollut; 2004; 127(2):229-38. PubMed ID: 14568722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Geostatistical mapping of precipitation: implications for rain gauge network design.
    Nour MH; Smit DW; Gamal El-Din M
    Water Sci Technol; 2006; 53(10):101-10. PubMed ID: 16838694
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Water Table Uncertainties due to Uncertainties in Structure and Properties of an Unconfined Aquifer.
    Hauser J; Wellmann F; Trefry M
    Ground Water; 2018 Mar; 56(2):251-265. PubMed ID: 28853137
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancing spatial estimates of metal pollutants in raw wastewater irrigated fields using a topsoil organic carbon map predicted from aerial photography.
    Bourennane H; Dère Ch; Lamy I; Cornu S; Baize D; van Oort F; King D
    Sci Total Environ; 2006 May; 361(1-3):229-48. PubMed ID: 15993472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CO
    Hoyt AM; Gandois L; Eri J; Kai FM; Harvey CF; Cobb AR
    Glob Chang Biol; 2019 Sep; 25(9):2885-2899. PubMed ID: 31100190
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Machine-Learning Methods for Water Table Depth Prediction in Seasonal Freezing-Thawing Areas.
    Zhao T; Zhu Y; Ye M; Mao W; Zhang X; Yang J; Wu J
    Ground Water; 2020 May; 58(3):419-431. PubMed ID: 31152434
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Bayesian geostatistical prediction of soil organic carbon contents of solonchak soils in nor-thern Tarim Basin, Xinjiang, China.].
    Wu WM; Wang JQ; Cao Q; Wu JP
    Ying Yong Sheng Tai Xue Bao; 2017 Feb; 28(2):439-448. PubMed ID: 29749151
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of kriging and cokriging for the geostatistical estimation of specific capacity in the Newark Basin (NJ) aquifer system.
    Carter GP; Miskewitz RJ; Isukapalli S; Mun Y; Vyas V; Yoon S; Georgeopoulos P; Uchrin CG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(4):371-7. PubMed ID: 21391031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kriging methods with auxiliary nighttime lights data to detect potentially toxic metals concentrations in soil.
    Zhen J; Pei T; Xie S
    Sci Total Environ; 2019 Apr; 659():363-371. PubMed ID: 30599355
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-at-a-time sensitivity analysis of pollutant loadings to subsurface properties for the assessment of soil and groundwater pollution potential.
    Yu S; Yun ST; Hwang SI; Chae G
    Environ Sci Pollut Res Int; 2019 Jul; 26(21):21216-21238. PubMed ID: 31115822
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of irrigation system management turnover on water table depth and salinity of groundwater.
    Gundogdu KS; Aslan ST
    J Environ Biol; 2007 Apr; 28(2 Suppl):455-9. PubMed ID: 17929765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for sensitivity of dune wetlands to groundwater nutrients.
    Rhymes J; Wallace H; Fenner N; Jones L
    Sci Total Environ; 2014 Aug; 490():106-13. PubMed ID: 24846404
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial assessment of soil organic carbon and physicochemical properties in a horticultural orchard at arid zone of India using geostatistical approaches.
    Singh A; Santra P; Kumar M; Panwar N; Meghwal PR
    Environ Monit Assess; 2016 Sep; 188(9):529. PubMed ID: 27553943
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Site-specific management of salt affected soils: A case study from Egypt.
    Shaddad SM; Buttafuoco G; Elrys A; Castrignanò A
    Sci Total Environ; 2019 Oct; 688():153-161. PubMed ID: 31229813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.