These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 31442725)
1. Bioaerosol detection over Athens, Greece using the laser induced fluorescence technique. Richardson SC; Mytilinaios M; Foskinis R; Kyrou C; Papayannis A; Pyrri I; Giannoutsou E; Adamakis IDS Sci Total Environ; 2019 Dec; 696():133906. PubMed ID: 31442725 [TBL] [Abstract][Full Text] [Related]
2. Optical, size and mass properties of mixed type aerosols in Greece and Romania as observed by synergy of lidar and sunphotometers in combination with model simulations: a case study. Papayannis A; Nicolae D; Kokkalis P; Binietoglou I; Talianu C; Belegante L; Tsaknakis G; Cazacu MM; Vetres I; Ilic L Sci Total Environ; 2014 Dec; 500-501():277-94. PubMed ID: 25226073 [TBL] [Abstract][Full Text] [Related]
3. High-Resolution Fluorescence Spectra of Airborne Biogenic Secondary Organic Aerosols: Comparisons to Primary Biological Aerosol Particles and Implications for Single-Particle Measurements. Zhang M; Su H; Li G; Kuhn U; Li S; Klimach T; Hoffmann T; Fu P; Pöschl U; Cheng Y Environ Sci Technol; 2021 Dec; 55(24):16747-16756. PubMed ID: 34699200 [TBL] [Abstract][Full Text] [Related]
4. On-line measurement of fluorescent aerosols near an industrial zone in the Yangtze River Delta region using a wideband integrated bioaerosol spectrometer. Ma Y; Wang Z; Yang D; Diao Y; Wang W; Zhang H; Zhu W; Zheng J Sci Total Environ; 2019 Mar; 656():447-457. PubMed ID: 30522027 [TBL] [Abstract][Full Text] [Related]
5. A new fluorescence-based methodology for studying bioaerosol scavenging processes using a hyperspectral LIF-LIDAR remote sensing system. Shoshanim O; Baratz A Environ Res; 2023 Jan; 217():114859. PubMed ID: 36427632 [TBL] [Abstract][Full Text] [Related]
6. Initial experimental multi-wavelength EEM (Excitation Emission Matrix) fluorescence lidar detection and classification of atmospheric pollen with potential applications toward real-time bioaerosols monitoring. Saito Y; Kawai K Opt Express; 2022 May; 30(11):19922-19929. PubMed ID: 36221755 [TBL] [Abstract][Full Text] [Related]
7. Portable automatic bioaerosol sampling system for rapid on-site detection of targeted airborne microorganisms. Usachev EV; Pankova AV; Rafailova EA; Pyankov OV; Agranovski IE J Environ Monit; 2012 Oct; 14(10):2739-45. PubMed ID: 22951953 [TBL] [Abstract][Full Text] [Related]
8. Molecular approaches for the detection and monitoring of microbial communities in bioaerosols: A review. Yoo K; Lee TK; Choi EJ; Yang J; Shukla SK; Hwang SI; Park J J Environ Sci (China); 2017 Jan; 51():234-247. PubMed ID: 28115135 [TBL] [Abstract][Full Text] [Related]
9. Spectroscopic detection of bioaerosols with the wibs-4+: Anthropogenic and meteorological impacts. Markey E; Hourihane Clancy J; Martínez-Bracero M; Sarda-Estève R; Baisnée D; McGillicuddy EJ; Sewell G; Skjøth CA; O'Connor DJ Sci Total Environ; 2024 Sep; 943():173649. PubMed ID: 38852865 [TBL] [Abstract][Full Text] [Related]
11. Biological and Nonbiological Sources of Fluorescent Aerosol Particles in the Urban Atmosphere. Yue S; Li L; Xu W; Zhao J; Ren H; Ji D; Li P; Zhang Q; Wei L; Xie Q; Pan X; Wang Z; Sun Y; Fu P Environ Sci Technol; 2022 Jun; 56(12):7588-7597. PubMed ID: 35544717 [TBL] [Abstract][Full Text] [Related]
12. Relationship between indoor and outdoor bio-aerosols collected with a button inhalable aerosol sampler in urban homes. Lee T; Grinshpun SA; Martuzevicius D; Adhikari A; Crawford CM; Luo J; Reponen T Indoor Air; 2006 Feb; 16(1):37-47. PubMed ID: 16420496 [TBL] [Abstract][Full Text] [Related]
13. Co-occurrence of airborne biological and anthropogenic pollutants in the central European urban ecosystem. Ščevková J; Vašková Z; Dušička J; Žilka M; Zvaríková M Environ Sci Pollut Res Int; 2023 Feb; 30(10):26523-26534. PubMed ID: 36367655 [TBL] [Abstract][Full Text] [Related]
14. Observational study of aerosol-induced impact on planetary boundary layer based on lidar and sunphotometer in Beijing. Wang H; Li Z; Lv Y; Xu H; Li K; Li D; Hou W; Zheng F; Wei Y; Ge B Environ Pollut; 2019 Sep; 252(Pt A):897-906. PubMed ID: 31212251 [TBL] [Abstract][Full Text] [Related]
16. On-line monitoring of airborne bioaerosols released from a composting/green waste site. O'Connor DJ; Daly SM; Sodeau JR Waste Manag; 2015 Aug; 42():23-30. PubMed ID: 25987290 [TBL] [Abstract][Full Text] [Related]
17. Summer storms and their effects on the spectrum and quantity of airborne bioparticles in Bratislava, Central Europe. Ščevková J; Dušička J; Tropeková M; Kováč J Environ Monit Assess; 2020 Jul; 192(8):537. PubMed ID: 32696086 [TBL] [Abstract][Full Text] [Related]
18. Verifying interpretive criteria for bioaerosol data using (bootstrap) Monte Carlo techniques. Spicer RC; Gangloff H J Occup Environ Hyg; 2008 Feb; 5(2):85-93. PubMed ID: 18075881 [TBL] [Abstract][Full Text] [Related]
19. Fluorescence preselection of bioaerosol for single-particle mass spectrometry. Stowers MA; van Wuijckhuijse AL; Marijnissen JC; Kientz ChE; Ciach T Appl Opt; 2006 Nov; 45(33):8531-6. PubMed ID: 17086265 [TBL] [Abstract][Full Text] [Related]
20. Effects of fungal species, cultivation time, growth substrate, and air exposure velocity on the fluorescence properties of airborne fungal spores. Saari S; Mensah-Attipoe J; Reponen T; Veijalainen AM; Salmela A; Pasanen P; Keskinen J Indoor Air; 2015 Dec; 25(6):653-61. PubMed ID: 25292152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]