BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31442759)

  • 1. Effects of graphite and Mn ore media on electro-active bacteria enrichment and fate of antibiotic and corresponding resistance gene in up flow microbial fuel cell constructed wetland.
    Li H; Xu H; Yang YL; Yang XL; Wu Y; Zhang S; Song HL
    Water Res; 2019 Nov; 165():114988. PubMed ID: 31442759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced removal of antibiotic and antibiotic resistance genes by coupling biofilm electrode reactor and manganese ore substrate up-flow microbial fuel cell constructed wetland system.
    Li H; Wang K; Xu J; Wu H; Ma Y; Zou R; Song HL
    Chemosphere; 2023 Oct; 338():139461. PubMed ID: 37437616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of sulfonamide resistance genes and bacterial community function prediction in microbial fuel cell-constructed wetland treating pharmaceutical wastewater.
    Li H; Cai Y; Gu Z; Yang YL; Zhang S; Yang XL; Song HL
    Chemosphere; 2020 Jun; 248():126014. PubMed ID: 31995737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofilm electrode reactor coupled manganese ore substrate up-flow microbial fuel cell-constructed wetland system: High removal efficiencies of antibiotic, zinc (II), and the corresponding antibiotic resistance genes.
    Li H; Cao H; Li T; He Z; Zhao J; Zhang Y; Song HL
    J Hazard Mater; 2023 Oct; 460():132394. PubMed ID: 37657329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous reduction of antibiotics leakage and methane emission from constructed wetland by integrating microbial fuel cell.
    Xu H; Song HL; Singh RP; Yang YL; Xu JY; Yang XL
    Bioresour Technol; 2021 Jan; 320(Pt A):124285. PubMed ID: 33130542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibiotic resistance genes, bacterial communities, and functions in constructed wetland-microbial fuel cells: Responses to the co-stresses of antibiotics and zinc.
    Li H; Xu H; Song HL; Lu Y; Yang XL
    Environ Pollut; 2020 Oct; 265(Pt B):115084. PubMed ID: 32806463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High removal efficiencies of antibiotics and low accumulation of antibiotic resistant genes obtained in microbial fuel cell-constructed wetlands intensified by sponge iron.
    Wen H; Zhu H; Yan B; Bañuelos G; Shutes B; Wang X; Cao S; Cheng R; Tian L
    Sci Total Environ; 2022 Feb; 806(Pt 1):150220. PubMed ID: 34560453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioelectricity generation, contaminant removal and bacterial community distribution as affected by substrate material size and aquatic macrophyte in constructed wetland-microbial fuel cell.
    Wang J; Song X; Wang Y; Bai J; Bai H; Yan D; Cao Y; Li Y; Yu Z; Dong G
    Bioresour Technol; 2017 Dec; 245(Pt A):372-378. PubMed ID: 28898833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effectiveness of constructed wetland integrated with microbial fuel cell for domestic wastewater treatment and to facilitate power generation.
    Yadav A; Jadhav DA; Ghangrekar MM; Mitra A
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):51117-51129. PubMed ID: 34826088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophytes.
    Wang J; Song X; Wang Y; Bai J; Li M; Dong G; Lin F; Lv Y; Yan D
    Sci Total Environ; 2017 Dec; 607-608():53-62. PubMed ID: 28686895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced degradation of bisphenol A and ibuprofen by an up-flow microbial fuel cell-coupled constructed wetland and analysis of bacterial community structure.
    Li H; Zhang S; Yang XL; Yang YL; Xu H; Li XN; Song HL
    Chemosphere; 2019 Feb; 217():599-608. PubMed ID: 30445405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell.
    Wang J; Song X; Wang Y; Abayneh B; Ding Y; Yan D; Bai J
    Bioresour Technol; 2016 Dec; 221():697-702. PubMed ID: 27717561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A continuous flow MFC-CW coupled with a biofilm electrode reactor to simultaneously attenuate sulfamethoxazole and its corresponding resistance genes.
    Li H; Song HL; Yang XL; Zhang S; Yang YL; Zhang LM; Xu H; Wang YW
    Sci Total Environ; 2018 Oct; 637-638():295-305. PubMed ID: 29751310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous removal of antibiotics and nitrogen by microbial fuel cell-constructed wetlands: Microbial response and carbon-nitrogen metabolism pathways.
    Xu W; Yang B; Wang H; Zhang L; Dong J; Liu C
    Sci Total Environ; 2023 Oct; 893():164855. PubMed ID: 37331404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the coexposure of sulfadiazine, ciprofloxacin and zinc on the fate of antibiotic resistance genes, bacterial communities and functions in three-dimensional biofilm-electrode reactors.
    Li H; Song HL; Xu H; Lu Y; Zhang S; Yang YL; Yang XL; Lu YX
    Bioresour Technol; 2020 Jan; 296():122290. PubMed ID: 31677404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role and related microbial processes of Mn-dependent anaerobic methane oxidation in reducing methane emissions from constructed wetland-microbial fuel cell.
    Zhang K; Wu X; Chen J; Wang W; Luo H; Chen W; Ma D; An X; Wei Z
    J Environ Manage; 2021 Sep; 294():112935. PubMed ID: 34119986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eco-electrogenic treatment of dyestuff wastewater using constructed wetland-microbial fuel cell system with an evaluation of electrode-enriched microbial community structures.
    Rathour R; Patel D; Shaikh S; Desai C
    Bioresour Technol; 2019 Aug; 285():121349. PubMed ID: 31004945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study on the treatment of swine wastewater by VFCW-MFC and VFCW: Pollutants removal, electricity generation, microorganism community.
    Guo J; Li Q; Gao Q; Shen F; Yang Y; Zhang X; Luo H
    J Environ Manage; 2023 Sep; 342():118299. PubMed ID: 37269721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of methanogens decreased sulfadiazine removal and increased antibiotic resistance gene development in microbial fuel cells.
    Zhang S; Song HL; Cao X; Li H; Guo J; Yang XL; Singh RP; Liu S
    Bioresour Technol; 2019 Jun; 281():188-194. PubMed ID: 30822639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell.
    Ge X; Cao X; Song X; Wang Y; Si Z; Zhao Y; Wang W; Tesfahunegn AA
    Bioresour Technol; 2020 Jan; 296():122350. PubMed ID: 31744666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.