These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 31442765)

  • 21. Exploring one-state downhill protein folding in single molecules.
    Liu J; Campos LA; Cerminara M; Wang X; Ramanathan R; English DS; Muñoz V
    Proc Natl Acad Sci U S A; 2012 Jan; 109(1):179-84. PubMed ID: 22184219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combining Graphical and Analytical Methods with Molecular Simulations To Analyze Time-Resolved FRET Measurements of Labeled Macromolecules Accurately.
    Peulen TO; Opanasyuk O; Seidel CAM
    J Phys Chem B; 2017 Sep; 121(35):8211-8241. PubMed ID: 28709377
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular and Spectroscopic Characterization of Green and Red Cyanine Fluorophores from the Alexa Fluor and AF Series*.
    Gebhardt C; Lehmann M; Reif MM; Zacharias M; Gemmecker G; Cordes T
    Chemphyschem; 2021 Aug; 22(15):1566-1583. PubMed ID: 34185946
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gas-phase Förster resonance energy transfer in mass-selected ions with methylene or peptide linkers between two dyes: a concerted dance of charges.
    Kjær C; Zhao Y; Stockett MH; Chen L; Hansen K; Nielsen SB
    Phys Chem Chem Phys; 2020 May; 22(19):11095-11100. PubMed ID: 32373846
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unfolded protein and peptide dynamics investigated with single-molecule FRET and correlation spectroscopy from picoseconds to seconds.
    Nettels D; Hoffmann A; Schuler B
    J Phys Chem B; 2008 May; 112(19):6137-46. PubMed ID: 18410159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photophysics of backbone fluorescent DNA modifications: reducing uncertainties in FRET.
    Ranjit S; Gurunathan K; Levitus M
    J Phys Chem B; 2009 Jun; 113(22):7861-6. PubMed ID: 19473039
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring protein structure and dynamics under denaturing conditions by single-molecule FRET analysis.
    Nienhaus GU
    Macromol Biosci; 2006 Nov; 6(11):907-22. PubMed ID: 17099864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inter-dye distance distributions studied by a combination of single-molecule FRET-filtered lifetime measurements and a weighted accessible volume (wAV) algorithm.
    Höfig H; Gabba M; Poblete S; Kempe D; Fitter J
    Molecules; 2014 Nov; 19(12):19269-91. PubMed ID: 25429558
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How Förster resonance energy transfer imaging improves the understanding of protein interaction networks in cancer biology.
    Fruhwirth GO; Fernandes LP; Weitsman G; Patel G; Kelleher M; Lawler K; Brock A; Poland SP; Matthews DR; Kéri G; Barber PR; Vojnovic B; Ameer-Beg SM; Coolen AC; Fraternali F; Ng T
    Chemphyschem; 2011 Feb; 12(3):442-61. PubMed ID: 21328516
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence of a folding intermediate in RNase H from single-molecule FRET experiments.
    Rieger R; Kobitski A; Sielaff H; Nienhaus GU
    Chemphyschem; 2011 Feb; 12(3):627-33. PubMed ID: 21344597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extensive use of FRET in biological imaging.
    Arai Y; Nagai T
    Microscopy (Oxf); 2013 Aug; 62(4):419-28. PubMed ID: 23797967
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional molecular modeling with single molecule FRET.
    Brunger AT; Strop P; Vrljic M; Chu S; Weninger KR
    J Struct Biol; 2011 Mar; 173(3):497-505. PubMed ID: 20837146
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Defining Dynamics of Membrane-Bound Pyrophosphatases by Experimental and Computational Single-Molecule FRET.
    Harborne SPD; Strauss J; Turku A; Watson MA; Tuma R; Harris SA; Goldman A
    Methods Enzymol; 2018; 607():93-130. PubMed ID: 30149870
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measuring protein conformational changes by FRET/LRET.
    Heyduk T
    Curr Opin Biotechnol; 2002 Aug; 13(4):292-6. PubMed ID: 12323348
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations.
    Merchant KA; Best RB; Louis JM; Gopich IV; Eaton WA
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1528-33. PubMed ID: 17251351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Förster resonance energy transfer: Role of diffusion of fluorophore orientation and separation in observed shifts of FRET efficiency.
    Wallace B; Atzberger PJ
    PLoS One; 2017; 12(5):e0177122. PubMed ID: 28542211
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanovesicle trapping for studying weak protein interactions by single-molecule FRET.
    Benítez JJ; Keller AM; Chen P
    Methods Enzymol; 2010; 472():41-60. PubMed ID: 20580959
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of single molecule Förster resonance energy transfer to protein folding.
    Schuler B
    Methods Mol Biol; 2007; 350():115-38. PubMed ID: 16957321
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiply labeling proteins for studies of folding and stability.
    Haney CM; Wissner RF; Petersson EJ
    Curr Opin Chem Biol; 2015 Oct; 28():123-30. PubMed ID: 26253346
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of confocal single-molecule FRET to intrinsically disordered proteins.
    Schuler B; Müller-Späth S; Soranno A; Nettels D
    Methods Mol Biol; 2012; 896():21-45. PubMed ID: 22821515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.