These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 31442836)
41. Preparation and properties of hydrochars from macadamia nut shell via hydrothermal carbonization. Fan F; Yang Z; Li H; Shi Z; Kan H R Soc Open Sci; 2018 Oct; 5(10):181126. PubMed ID: 30473856 [TBL] [Abstract][Full Text] [Related]
42. Effect of temperature on the fuel properties of food waste and coal blend treated under co-hydrothermal carbonization. Ul Saqib N; Sarmah AK; Baroutian S Waste Manag; 2019 Apr; 89():236-246. PubMed ID: 31079736 [TBL] [Abstract][Full Text] [Related]
44. Hydrothermal carbonization of acerola (Malphigia emarginata D.C.) wastes and its application as an adsorbent. Nogueira GDR; Duarte CR; Barrozo MAS Waste Manag; 2019 Jul; 95():466-475. PubMed ID: 31351633 [TBL] [Abstract][Full Text] [Related]
45. Comparison of liquid and vapor hydrothermal carbonization of corn husk for the use as a solid fuel. Minaret J; Dutta A Bioresour Technol; 2016 Jan; 200():804-11. PubMed ID: 26584229 [TBL] [Abstract][Full Text] [Related]
46. Nutrient Behavior in Hydrothermal Carbonization Aqueous Phase Following Recirculation and Reuse. Mau V; Neumann J; Wehrli B; Gross A Environ Sci Technol; 2019 Sep; 53(17):10426-10434. PubMed ID: 31369242 [TBL] [Abstract][Full Text] [Related]
47. Hydrothermal carbonization of anaerobic digestate and manure from a dairy farm on energy recovery and the fate of nutrients. Belete YZ; Mau V; Yahav Spitzer R; Posmanik R; Jassby D; Iddya A; Kassem N; Tester JW; Gross A Bioresour Technol; 2021 Aug; 333():125164. PubMed ID: 33906016 [TBL] [Abstract][Full Text] [Related]
48. Optimization and characterization of hydrochar produced from microwave hydrothermal carbonization of fish waste. Kannan S; Gariepy Y; Raghavan GSV Waste Manag; 2017 Jul; 65():159-168. PubMed ID: 28412097 [TBL] [Abstract][Full Text] [Related]
49. Hydrothermal carbonization (HTC) of dairy waste: effect of temperature and initial acidity on the composition and quality of solid and liquid products. Khalaf N; Shi W; Fenton O; Kwapinski W; Leahy JJ Open Res Eur; 2022; 2():83. PubMed ID: 37645300 [No Abstract] [Full Text] [Related]
50. Energy conversion performance in co-hydrothermal carbonization of sewage sludge and pinewood sawdust coupling with anaerobic digestion of the produced wastewater. Wang R; Lin K; Ren D; Peng P; Zhao Z; Yin Q; Gao P Sci Total Environ; 2022 Jan; 803():149964. PubMed ID: 34481162 [TBL] [Abstract][Full Text] [Related]
51. Hydrothermal carbonization of waste from leather processing and feasibility of produced hydrochar as an alternative solid fuel. Lee J; Hong J; Jang D; Park KY J Environ Manage; 2019 Oct; 247():115-120. PubMed ID: 31234046 [TBL] [Abstract][Full Text] [Related]
52. Evaluation of the aerobic biodegradability of process water produced by hydrothermal carbonization and inhibition effects on the heterotrophic biomass of an activated sludge system. Langone M; Sabia G; Petta L; Zanetti L; Leoni P; Basso D J Environ Manage; 2021 Dec; 299():113561. PubMed ID: 34523544 [TBL] [Abstract][Full Text] [Related]
53. Improved solid/liquid separation performance of hydrochar from sludge via hydrothermal carbonization. Zhong J; Zhu W; Mu B; Sun J; Wang X; Lin N; Cao J J Environ Manage; 2023 Dec; 347():119182. PubMed ID: 37806276 [TBL] [Abstract][Full Text] [Related]
54. Valorization of microalgal biomass by hydrothermal carbonization and anaerobic digestion. Marin-Batista JD; Villamil JA; Rodriguez JJ; Mohedano AF; de la Rubia MA Bioresour Technol; 2019 Feb; 274():395-402. PubMed ID: 30551042 [TBL] [Abstract][Full Text] [Related]
55. Hydrothermal carbonization of different wetland biomass wastes: Phosphorus reclamation and hydrochar production. Cui X; Lu M; Khan MB; Lai C; Yang X; He Z; Chen G; Yan B Waste Manag; 2020 Feb; 102():106-113. PubMed ID: 31670228 [TBL] [Abstract][Full Text] [Related]
56. Hydrothermal carbonisation of mechanically dewatered digested sewage sludge-Energy and nutrient recovery in centralised biogas plant. Hämäläinen A; Kokko M; Kinnunen V; Hilli T; Rintala J Water Res; 2021 Aug; 201():117284. PubMed ID: 34107365 [TBL] [Abstract][Full Text] [Related]
57. Co-hydrothermal carbonization of organic solid wastes to hydrochar as potential fuel: A review. Wang Q; Wu S; Cui D; Zhou H; Wu D; Pan S; Xu F; Wang Z Sci Total Environ; 2022 Dec; 850():158034. PubMed ID: 35970457 [TBL] [Abstract][Full Text] [Related]
58. Bridging the gap to hydrochar production and its application into frameworks of bioenergy, environmental and biocatalysis areas. Fernández-Sanromán Á; Lama G; Pazos M; Rosales E; Sanromán MÁ Bioresour Technol; 2021 Jan; 320(Pt B):124399. PubMed ID: 33220547 [TBL] [Abstract][Full Text] [Related]
59. Co-hydrothermal carbonization of lignocellulosic biomass and swine manure: Hydrochar properties and heavy metal transformation behavior. Lang Q; Guo Y; Zheng Q; Liu Z; Gai C Bioresour Technol; 2018 Oct; 266():242-248. PubMed ID: 29982044 [TBL] [Abstract][Full Text] [Related]
60. Preparation of solid organic fertilizer by co-hydrothermal carbonization of peanut residue and corn cob: A study on nutrient conversion. Li CS; Cai RR Sci Total Environ; 2022 Sep; 838(Pt 2):155867. PubMed ID: 35568172 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]