These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31443048)

  • 21. On the amyloid datasets used for training PAFIG--how (not) to extend the experimental dataset of hexapeptides.
    Kotulska M; Unold O
    BMC Bioinformatics; 2013 Dec; 14():351. PubMed ID: 24305169
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correlation Filters for Detection of Cellular Nuclei in Histopathology Images.
    Ahmad A; Asif A; Rajpoot N; Arif M; Minhas FUAA
    J Med Syst; 2017 Nov; 42(1):7. PubMed ID: 29164340
    [TBL] [Abstract][Full Text] [Related]  

  • 23. AmyPro: a database of proteins with validated amyloidogenic regions.
    Varadi M; De Baets G; Vranken WF; Tompa P; Pancsa R
    Nucleic Acids Res; 2018 Jan; 46(D1):D387-D392. PubMed ID: 29040693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A consensus method for the prediction of 'aggregation-prone' peptides in globular proteins.
    Tsolis AC; Papandreou NC; Iconomidou VA; Hamodrakas SJ
    PLoS One; 2013; 8(1):e54175. PubMed ID: 23326595
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discordant and chameleon sequences: their distribution and implications for amyloidogenicity.
    Gendoo DM; Harrison PM
    Protein Sci; 2011 Mar; 20(3):567-79. PubMed ID: 21432934
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gene ontology based transfer learning for protein subcellular localization.
    Mei S; Fei W; Zhou S
    BMC Bioinformatics; 2011 Feb; 12():44. PubMed ID: 21284890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NetGO: improving large-scale protein function prediction with massive network information.
    You R; Yao S; Xiong Y; Huang X; Sun F; Mamitsuka H; Zhu S
    Nucleic Acids Res; 2019 Jul; 47(W1):W379-W387. PubMed ID: 31106361
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Misfolding of amyloidogenic proteins and their interactions with membranes.
    Relini A; Marano N; Gliozzi A
    Biomolecules; 2013 Dec; 4(1):20-55. PubMed ID: 24970204
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison and integration of computational methods for deleterious synonymous mutation prediction.
    Cheng N; Li M; Zhao L; Zhang B; Yang Y; Zheng CH; Xia J
    Brief Bioinform; 2020 May; 21(3):970-981. PubMed ID: 31157880
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein subcellular localization prediction of eukaryotes using a knowledge-based approach.
    Lin HN; Chen CT; Sung TY; Ho SY; Hsu WL
    BMC Bioinformatics; 2009 Dec; 10 Suppl 15(Suppl 15):S8. PubMed ID: 19958518
    [TBL] [Abstract][Full Text] [Related]  

  • 32. iLearnPlus: a comprehensive and automated machine-learning platform for nucleic acid and protein sequence analysis, prediction and visualization.
    Chen Z; Zhao P; Li C; Li F; Xiang D; Chen YZ; Akutsu T; Daly RJ; Webb GI; Zhao Q; Kurgan L; Song J
    Nucleic Acids Res; 2021 Jun; 49(10):e60. PubMed ID: 33660783
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BioSeq-Analysis: a platform for DNA, RNA and protein sequence analysis based on machine learning approaches.
    Liu B
    Brief Bioinform; 2019 Jul; 20(4):1280-1294. PubMed ID: 29272359
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of nuclear proteins using nuclear translocation signals proposed by probabilistic latent semantic indexing.
    Su EC; Chang JM; Cheng CW; Sung TY; Hsu WL
    BMC Bioinformatics; 2012; 13 Suppl 17(Suppl 17):S13. PubMed ID: 23282098
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fast Prediction of Protein Methylation Sites Using a Sequence-Based Feature Selection Technique.
    Wei L; Xing P; Shi G; Ji Z; Zou Q
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1264-1273. PubMed ID: 28222000
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PAIRpred: partner-specific prediction of interacting residues from sequence and structure.
    Minhas Fu; Geiss BJ; Ben-Hur A
    Proteins; 2014 Jul; 82(7):1142-55. PubMed ID: 24243399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Complete characterization of the mutation landscape reveals the effect on amylin stability and amyloidogenicity.
    Smaoui MR; Waldispühl J
    Proteins; 2015 Jun; 83(6):1014-26. PubMed ID: 25809921
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 'Unite and conquer': enhanced prediction of protein subcellular localization by integrating multiple specialized tools.
    Shen YQ; Burger G
    BMC Bioinformatics; 2007 Oct; 8():420. PubMed ID: 17967180
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From Seeds to Fibrils and Back: Fragmentation as an Overlooked Step in the Propagation of Prions and Prion-Like Proteins.
    Marrero-Winkens C; Sankaran C; Schätzl HM
    Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32927676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.