These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 31443144)
21. Microstructure and Enhanced Properties of Copper-Vanadium Nanocomposites Obtained by Powder Metallurgy. Wang Y; Wang J; Zou H; Wang Y; Ran X Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30678212 [TBL] [Abstract][Full Text] [Related]
22. Spark Plasma Sintering Behavior of Nb-Mo-Si Alloy Powders Fabricated by Hydrogenation-Dehydrogenation Method. Lee SY; Park KB; Kang JW; Kim Y; Kang HS; Ha TK; Min SH; Park HK Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31671875 [TBL] [Abstract][Full Text] [Related]
23. Characterization of the Native Oxide Shell of Copper Metal Powder Spherical Particles. Mahmoud MM Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295300 [TBL] [Abstract][Full Text] [Related]
24. In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics. Hwang HJ; Chung WH; Kim HS Nanotechnology; 2012 Dec; 23(48):485205. PubMed ID: 23138346 [TBL] [Abstract][Full Text] [Related]
25. Room-Temperature Wet Chemical Synthesis of Au NPs/TiH Amin MA; Fadlallah SA; Alosaimi GS; Ahmed EM; Mostafa NY; Roussel P; Szunerits S; Boukherroub R ACS Appl Mater Interfaces; 2017 Sep; 9(35):30115-30126. PubMed ID: 28771327 [TBL] [Abstract][Full Text] [Related]
26. Fabrication of alumina-based metal nanocomposites by pressureless sintering and their mechanical properties. Oh ST; Lee SI J Nanosci Nanotechnol; 2010 Jan; 10(1):366-9. PubMed ID: 20352863 [TBL] [Abstract][Full Text] [Related]
27. Effects of Cu/SnAgCu Powder Fraction and Sintering Time on Microstructure and Mechanical Properties of Transient Liquid Phase Sintered Joints. Tran DP; Liu YT; Chen C Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730812 [TBL] [Abstract][Full Text] [Related]
28. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics. Joo SJ; Hwang HJ; Kim HS Nanotechnology; 2014 Jul; 25(26):265601. PubMed ID: 24916116 [TBL] [Abstract][Full Text] [Related]
29. Ultra-low temperature sintering of Cu@Ag core-shell nanoparticle paste by ultrasonic in air for high-temperature power device packaging. Ji H; Zhou J; Liang M; Lu H; Li M Ultrason Sonochem; 2018 Mar; 41():375-381. PubMed ID: 29137764 [TBL] [Abstract][Full Text] [Related]
30. Effect of sintering temperature on flexural properties of alumina fiber-reinforced, alumina-based ceramics prepared by tape casting technique. Tanimoto Y; Nemoto K J Prosthodont; 2006; 15(6):345-52. PubMed ID: 17096806 [TBL] [Abstract][Full Text] [Related]
31. Characterization of the distribution of the sintering activator boron in powder metallurgical steels with SIMS. Krecar D; Vassileva V; Danninger H; Hutter H Anal Bioanal Chem; 2004 Jun; 379(4):605-9. PubMed ID: 15004734 [TBL] [Abstract][Full Text] [Related]
32. [Application of sintered Ti powder to dental prostheses]. Hikosaka T; Tanaka Y; Hoshiai K; Kanazawa T; Nakamura Y; Tsuda K; Ohasi H Nihon Hotetsu Shika Gakkai Zasshi; 2005 Apr; 49(2):242-52. PubMed ID: 15858319 [TBL] [Abstract][Full Text] [Related]
33. Synthesis and Consolidation of Nano-Sized Cu Coated SiC Powders by a Chemical Method and Spark Plasma Sintering. Jeong YK; Bang SR; Oh ST J Nanosci Nanotechnol; 2016 Feb; 16(2):1993-5. PubMed ID: 27433715 [TBL] [Abstract][Full Text] [Related]
34. Hybrid Printing Metal-mesh Transparent Conductive Films with Lower Energy Photonically Sintered Copper/tin Ink. Chen X; Wu X; Shao S; Zhuang J; Xie L; Nie S; Su W; Chen Z; Cui Z Sci Rep; 2017 Oct; 7(1):13239. PubMed ID: 29038555 [TBL] [Abstract][Full Text] [Related]
35. An application of powder metallurgy to dentistry. Oda Y; Ueno S; Kudoh Y Bull Tokyo Dent Coll; 1995 Nov; 36(4):175-82. PubMed ID: 8689755 [TBL] [Abstract][Full Text] [Related]
36. The mechanism of NO Han S; Shao R; Wang L; Zhang X; Xuan C; Cheng X; Wang Z RSC Adv; 2024 Apr; 14(16):11007-11016. PubMed ID: 38586448 [TBL] [Abstract][Full Text] [Related]
37. Sintering of MSW fly ash for reuse as a concrete aggregate. Mangialardi T J Hazard Mater; 2001 Oct; 87(1-3):225-39. PubMed ID: 11566412 [TBL] [Abstract][Full Text] [Related]
38. Size control of Cu nanorods through oxygen-mediated growth and low temperature sintering. Wang PI; Parker TC; Karabacak T; Wang GC; Lu TM Nanotechnology; 2009 Feb; 20(8):085605. PubMed ID: 19417453 [TBL] [Abstract][Full Text] [Related]
39. Filtration-induced production of conductive/robust Cu films on cellulose paper by low-temperature sintering in air. Sakurai S; Akiyama Y; Kawasaki H R Soc Open Sci; 2018 Jul; 5(7):172417. PubMed ID: 30109061 [TBL] [Abstract][Full Text] [Related]
40. A Novel Preparation of Ag Agglomerates Paste with Unique Sintering Behavior at Low Temperature. Li J; Xu Y; Meng Y; Yin Z; Zhao X; Wang Y; Suga T Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34066359 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]