These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 31443215)
1. Study on the Thermal Conductivity Characteristics for Ultra-Thin Body FD SOI MOSFETs Based on Phonon Scattering Mechanisms. Zhang G; Lai J; Su Y; Li B; Li B; Bu J; Yang CF Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31443215 [TBL] [Abstract][Full Text] [Related]
2. Thermal Conductivity of β-Phase Ga Song Y; Ranga P; Zhang Y; Feng Z; Huang HL; Santia MD; Badescu SC; Gonzalez-Valle CU; Perez C; Ferri K; Lavelle RM; Snyder DW; Klein BA; Deitz J; Baca AG; Maria JP; Ramos-Alvarado B; Hwang J; Zhao H; Wang X; Krishnamoorthy S; Foley BM; Choi S ACS Appl Mater Interfaces; 2021 Aug; 13(32):38477-38490. PubMed ID: 34370459 [TBL] [Abstract][Full Text] [Related]
3. Electron-phonon scattering effect on the lattice thermal conductivity of silicon nanostructures. Fu B; Tang G; Li Y Phys Chem Chem Phys; 2017 Nov; 19(42):28517-28526. PubMed ID: 28902205 [TBL] [Abstract][Full Text] [Related]
5. Bulk-like Intrinsic Phonon Thermal Conductivity of Micrometer-Thick AlN Films. Koh YR; Cheng Z; Mamun A; Bin Hoque MS; Liu Z; Bai T; Hussain K; Liao ME; Li R; Gaskins JT; Giri A; Tomko J; Braun JL; Gaevski M; Lee E; Yates L; Goorsky MS; Luo T; Khan A; Graham S; Hopkins PE ACS Appl Mater Interfaces; 2020 Jul; 12(26):29443-29450. PubMed ID: 32491824 [TBL] [Abstract][Full Text] [Related]
6. The effect of the electron-phonon coupling on the thermal conductivity of silicon nanowires. Wan W; Xiong B; Zhang W; Feng J; Wang E J Phys Condens Matter; 2012 Jul; 24(29):295402. PubMed ID: 22728956 [TBL] [Abstract][Full Text] [Related]
7. Effect of Microwave Annealing on the Interface Properties Between the Top Silicon and Buried Oxide Layers in Silicon-on-Insulator MOSFETs. Lee GY; Cho WJ J Nanosci Nanotechnol; 2019 Oct; 19(10):6043-6049. PubMed ID: 31026905 [TBL] [Abstract][Full Text] [Related]
8. Electron-phonon interaction model and prediction of thermal energy transport in SOI transistor. Jin JS; Lee JS J Nanosci Nanotechnol; 2007 Nov; 7(11):4094-100. PubMed ID: 18047127 [TBL] [Abstract][Full Text] [Related]
9. Isotope doping-induced crossover shift in the thermal conductivity of thin silicon nanowires. Zhou Z; Xu K; Song Z; Wang Z; Lin Y; Shi Q; Hao Y; Fu Y; Zhang Z; Wu J J Phys Condens Matter; 2022 Dec; 35(8):. PubMed ID: 36540938 [TBL] [Abstract][Full Text] [Related]
10. Study of Carrier Mobilities in 4H-SiC MOSFETS Using Hall Analysis. Das S; Zheng Y; Ahyi A; Kuroda MA; Dhar S Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234077 [TBL] [Abstract][Full Text] [Related]
11. Empirical and Theoretical Modeling of Low-Frequency Noise Behavior of Ultrathin Silicon-on-Insulator MOSFETs Aiming at Low-Voltage and Low-Energy Regime. Omura Y Micromachines (Basel); 2018 Dec; 10(1):. PubMed ID: 30583561 [TBL] [Abstract][Full Text] [Related]
12. Thermal Boundary Conductance of Direct Bonded Aluminum Nitride to Silicon Interfaces. Nieminen T; Koskinen T; Kornienko V; Ross G; Paulasto-Kröckel M ACS Appl Electron Mater; 2024 Apr; 6(4):2413-2419. PubMed ID: 38680727 [TBL] [Abstract][Full Text] [Related]
13. Phonon surface scattering controlled length dependence of thermal conductivity of silicon nanowires. Xie G; Guo Y; Li B; Yang L; Zhang K; Tang M; Zhang G Phys Chem Chem Phys; 2013 Sep; 15(35):14647-52. PubMed ID: 23884577 [TBL] [Abstract][Full Text] [Related]
14. Phononic thermal conductivity in silicene: the role of vacancy defects and boundary scattering. Barati M; Vazifehshenas T; Salavati-Fard T; Farmanbar M J Phys Condens Matter; 2018 Apr; 30(15):155307. PubMed ID: 29504943 [TBL] [Abstract][Full Text] [Related]
15. Thermal conductivity and air-mediated losses in periodic porous silicon membranes at high temperatures. Graczykowski B; El Sachat A; Reparaz JS; Sledzinska M; Wagner MR; Chavez-Angel E; Wu Y; Volz S; Wu Y; Alzina F; Sotomayor Torres CM Nat Commun; 2017 Sep; 8(1):415. PubMed ID: 28871197 [TBL] [Abstract][Full Text] [Related]
16. Ballistic phonon transport in holey silicon. Lee J; Lim J; Yang P Nano Lett; 2015 May; 15(5):3273-9. PubMed ID: 25861026 [TBL] [Abstract][Full Text] [Related]
17. Single-electron effects in non-overlapped multiple-gate silicon-on-insulator metal-oxide-semiconductor field-effect transistors. Lee W; Su P Nanotechnology; 2009 Feb; 20(6):065202. PubMed ID: 19417374 [TBL] [Abstract][Full Text] [Related]
18. Nanoscale heat transport through the hetero-interface of SrRuO Jeong DG; Ju HI; Choi YG; Roh CJ; Woo S; Choi WS; Lee JS Nanotechnology; 2019 Sep; 30(37):374001. PubMed ID: 31181544 [TBL] [Abstract][Full Text] [Related]
19. Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature. Alaie S; Goettler DF; Su M; Leseman ZC; Reinke CM; El-Kady I Nat Commun; 2015 Jun; 6():7228. PubMed ID: 26105560 [TBL] [Abstract][Full Text] [Related]
20. Doping-Free Arsenene Heterostructure Metal-Oxide-Semiconductor Field Effect Transistors Enabled by Thickness Modulated Semiconductor to Metal Transition in Arsenene. Seo D; Chang J Sci Rep; 2019 Mar; 9(1):3988. PubMed ID: 30850758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]