BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 31443305)

  • 41. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.
    Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Translational contributions to tissue specificity in rhythmic and constitutive gene expression.
    Castelo-Szekely V; Arpat AB; Janich P; Gatfield D
    Genome Biol; 2017 Jun; 18(1):116. PubMed ID: 28622766
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rhythmic Food Intake Drives Rhythmic Gene Expression More Potently than the Hepatic Circadian Clock in Mice.
    Greenwell BJ; Trott AJ; Beytebiere JR; Pao S; Bosley A; Beach E; Finegan P; Hernandez C; Menet JS
    Cell Rep; 2019 Apr; 27(3):649-657.e5. PubMed ID: 30995463
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Multi-Layered Study on Harmonic Oscillations in Mammalian Genomics and Proteomics.
    Genov N; Castellana S; Scholkmann F; Capocefalo D; Truglio M; Rosati J; Turco EM; Biagini T; Carbone A; Mazza T; Relógio A; Mazzoccoli G
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31533246
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Revealing the hidden reality of the mammalian 12-h ultradian rhythms.
    Ballance H; Zhu B
    Cell Mol Life Sci; 2021 Apr; 78(7):3127-3140. PubMed ID: 33449146
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficient and Accurate Quantitative Profiling of Alternative Splicing Patterns of Any Complexity on a Laptop.
    Sterne-Weiler T; Weatheritt RJ; Best AJ; Ha KCH; Blencowe BJ
    Mol Cell; 2018 Oct; 72(1):187-200.e6. PubMed ID: 30220560
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spotlight on post-transcriptional control in the circadian system.
    Staiger D; Köster T
    Cell Mol Life Sci; 2011 Jan; 68(1):71-83. PubMed ID: 20803230
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Diurnal rhythms in neurexins transcripts and inhibitory/excitatory synapse scaffold proteins in the biological clock.
    Shapiro-Reznik M; Jilg A; Lerner H; Earnest DJ; Zisapel N
    PLoS One; 2012; 7(5):e37894. PubMed ID: 22662246
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In the Driver's Seat: The Case for Transcriptional Regulation and Coupling as Relevant Determinants of the Circadian Transcriptome and Proteome in Eukaryotes.
    Montenegro-Montero A; Larrondo LF
    J Biol Rhythms; 2016 Feb; 31(1):37-47. PubMed ID: 26446874
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deep RNA sequencing reveals a high frequency of alternative splicing events in the fungus Trichoderma longibrachiatum.
    Xie BB; Li D; Shi WL; Qin QL; Wang XW; Rong JC; Sun CY; Huang F; Zhang XY; Dong XW; Chen XL; Zhou BC; Zhang YZ; Song XY
    BMC Genomics; 2015 Feb; 16(1):54. PubMed ID: 25652134
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dawn- and dusk-phased circadian transcription rhythms coordinate anabolic and catabolic functions in Neurospora.
    Sancar C; Sancar G; Ha N; Cesbron F; Brunner M
    BMC Biol; 2015 Feb; 13():17. PubMed ID: 25762222
    [TBL] [Abstract][Full Text] [Related]  

  • 52. XAP5 CIRCADIAN TIMEKEEPER specifically modulates 3' splice site recognition and is important for circadian clock regulation partly by alternative splicing of LHY and TIC.
    Liu L; Li X; Yuan L; Zhang G; Gao H; Xu X; Zhao H
    Plant Physiol Biochem; 2022 Feb; 172():151-157. PubMed ID: 35065375
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genomic analysis reveals novel connections between alternative splicing and circadian regulatory networks.
    Perez-Santángelo S; Schlaen RG; Yanovsky MJ
    Brief Funct Genomics; 2013 Jan; 12(1):13-24. PubMed ID: 23165351
    [TBL] [Abstract][Full Text] [Related]  

  • 54. OsPRR37 confers an expanded regulation of the diurnal rhythms of the transcriptome and photoperiodic flowering pathways in rice.
    Liu C; Qu X; Zhou Y; Song G; Abiri N; Xiao Y; Liang F; Jiang D; Hu Z; Yang D
    Plant Cell Environ; 2018 Mar; 41(3):630-645. PubMed ID: 29314052
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Monitoring cell-autonomous circadian clock rhythms of gene expression using luciferase bioluminescence reporters.
    Ramanathan C; Khan SK; Kathale ND; Xu H; Liu AC
    J Vis Exp; 2012 Sep; (67):. PubMed ID: 23052244
    [TBL] [Abstract][Full Text] [Related]  

  • 56. SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis.
    Wang X; Wu F; Xie Q; Wang H; Wang Y; Yue Y; Gahura O; Ma S; Liu L; Cao Y; Jiao Y; Puta F; McClung CR; Xu X; Ma L
    Plant Cell; 2012 Aug; 24(8):3278-95. PubMed ID: 22942380
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Entrainment of Breast Cell Lines Results in Rhythmic Fluctuations of MicroRNAs.
    Chacolla-Huaringa R; Moreno-Cuevas J; Trevino V; Scott SP
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28704935
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ribosome profiling reveals an important role for translational control in circadian gene expression.
    Jang C; Lahens NF; Hogenesch JB; Sehgal A
    Genome Res; 2015 Dec; 25(12):1836-47. PubMed ID: 26338483
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microfluidic isoform sequencing shows widespread splicing coordination in the human transcriptome.
    Tilgner H; Jahanbani F; Gupta I; Collier P; Wei E; Rasmussen M; Snyder M
    Genome Res; 2018 Feb; 28(2):231-242. PubMed ID: 29196558
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Post-transcriptional control of the mammalian circadian clock: implications for health and disease.
    Preußner M; Heyd F
    Pflugers Arch; 2016 Jun; 468(6):983-91. PubMed ID: 27108448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.