BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 31443400)

  • 1. Prediction Model for Mechanical Properties of Lightweight Aggregate Concrete Using Artificial Neural Network.
    Yoon JY; Kim H; Lee YJ; Sim SH
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31443400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid nonlinear regression model versus MARS, MEP, and ANN to evaluate the effect of the size and content of waste tire rubber on the compressive strength of concrete.
    Ismael Jaf DK; Abdalla A; Mohammed AS; Abdulrahman PI; Rawaz Kurda ; Mohammed AA
    Heliyon; 2024 Feb; 10(4):e25997. PubMed ID: 38384542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical Properties of Chopped Basalt Fiber-Reinforced Lightweight Aggregate Concrete and Chopped Polyacrylonitrile Fiber Reinforced Lightweight Aggregate Concrete.
    Zeng Y; Zhou X; Tang A; Sun P
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32268580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation Analysis of Ultrasonic Pulse Velocity and Mechanical Properties of Normal Aggregate and Lightweight Aggregate Concretes in 30-60 MPa Range.
    Kim W; Jeong K; Choi H; Lee T
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network.
    Bu L; Du G; Hou Q
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustainable Hybrid Lightweight Aggregate Concrete Using Recycled Expanded Polystyrene.
    González-Betancur D; Hoyos-Montilla AA; Tobón JI
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of Properties of Structural Lightweight Concrete with Sintered Fly Ash Aggregate in Terms of Its Suitability for Use in Prestressed Members.
    Rodacka M; Domagała L; Szydłowski R
    Materials (Basel); 2023 Aug; 16(15):. PubMed ID: 37570132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Performance of Lightweight Concrete with Granulated Expanded Glass and Ash Aggregate by Means of Using Artificial Neural Networks.
    Kurpinska M; Kułak L
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31234516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial neural network, machine learning modelling of compressive strength of recycled coarse aggregate based self-compacting concrete.
    Jagadesh P; Khan AH; Priya BS; Asheeka A; Zoubir Z; Magbool HM; Alam S; Bakather OY
    PLoS One; 2024; 19(5):e0303101. PubMed ID: 38739642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Analytical Method for Mix Design and Performance Prediction of High Calcium Fly Ash Geopolymer Concrete.
    Gunasekara C; Atzarakis P; Lokuge W; Law DW; Setunge S
    Polymers (Basel); 2021 Mar; 13(6):. PubMed ID: 33804194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash.
    Safiuddin M; Raman SN; Abdus Salam M; Jumaat MZ
    Materials (Basel); 2016 May; 9(5):. PubMed ID: 28773520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Aggregate Size on Strength Characteristics of High Strength Lightweight Concrete.
    Wei H; Liu Y; Wu T; Liu X
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32183197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Corrosion Resistance of Reinforced Lightweight Aggregate Concrete in Strong Brine Environments.
    Chen HJ; Chen YC; Tang CW; Lin XF
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of aggregate pre-wetting and fly ash on mechanical properties of lightweight concrete.
    Lo TY; Cui HZ; Li ZG
    Waste Manag; 2004; 24(4):333-8. PubMed ID: 15081059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Mechanical Properties of Highly Functional Lightweight Fiber-Reinforced Concrete Based on Deep Neural Network and Ensemble Regression Trees Methods.
    Stel'makh SA; Shcherban' EM; Beskopylny AN; Mailyan LR; Meskhi B; Razveeva I; Kozhakin A; Beskopylny N
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of Lightweight Aggregate Concrete Reinforced with Carbon and/or Polypropylene Fibers.
    Wei H; Wu T; Yang X
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32023982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutral Axis Depth versus Ductility and Plastic Rotation Capacity on Bending in Lightweight-Aggregate Concrete Beams.
    Bernardo L; Nepomuceno M; Pinto H
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31652946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the ANN Hyperparameters on the Forecast Accuracy of RAC's Compressive Strength.
    Almeida TADC; Felix EF; de Sousa CMA; Pedroso GOM; Motta MFB; Prado LP
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundamental Study on the Development of Structural Lightweight Concrete by Using Normal Coarse Aggregate and Foaming Agent.
    Lee HS; Ismail MA; Woo YJ; Min TB; Choi HK
    Materials (Basel); 2014 Jun; 7(6):4536-4554. PubMed ID: 28788691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Moisture Condition of Structural Lightweight Concretes on Specified Values of Static and Dynamic Modulus of Elasticity.
    Domagała L; Sieja K
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.