These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 31443411)

  • 1. Augmentation of Glucotoxicity, Oxidative Stress, Apoptosis and Mitochondrial Dysfunction in HepG2 Cells by Palmitic Acid.
    Alnahdi A; John A; Raza H
    Nutrients; 2019 Aug; 11(9):. PubMed ID: 31443411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigation of Glucolipotoxicity-Induced Apoptosis, Mitochondrial Dysfunction, and Metabolic Stress by
    Alnahdi A; John A; Raza H
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32033264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autophagy activation by Jiang Zhi Granule protects against metabolic stress-induced hepatocyte injury.
    Zheng YY; Wang M; Shu XB; Zheng PY; Ji G
    World J Gastroenterol; 2018 Mar; 24(9):992-1003. PubMed ID: 29531463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Downregulation of sirtuin 3 by palmitic acid increases the oxidative stress, impairment of mitochondrial function, and apoptosis in liver cells.
    Sharma G; Parihar A; Parihar P; Parihar MS
    J Biochem Mol Toxicol; 2019 Aug; 33(8):e22337. PubMed ID: 30958623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inflammasome, mTORC1 activation, and metabolic derangement contribute to the susceptibility of diabetics to infections.
    Krakauer T
    Med Hypotheses; 2015 Dec; 85(6):997-1001. PubMed ID: 26384528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gallic Acid Inhibits Lipid Accumulation via AMPK Pathway and Suppresses Apoptosis and Macrophage-Mediated Inflammation in Hepatocytes.
    Tanaka M; Sato A; Kishimoto Y; Mabashi-Asazuma H; Kondo K; Iida K
    Nutrients; 2020 May; 12(5):. PubMed ID: 32443660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potentiation of LPS-Induced Apoptotic Cell Death in Human Hepatoma HepG2 Cells by Aspirin via ROS and Mitochondrial Dysfunction: Protection by N-Acetyl Cysteine.
    Raza H; John A; Shafarin J
    PLoS One; 2016; 11(7):e0159750. PubMed ID: 27441638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attenuation of Palmitic Acid-Induced Lipotoxicity by Chlorogenic Acid through Activation of SIRT1 in Hepatocytes.
    Yang L; Wei J; Sheng F; Li P
    Mol Nutr Food Res; 2019 Jul; 63(14):e1801432. PubMed ID: 31168914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SR4 Uncouples Mitochondrial Oxidative Phosphorylation, Modulates AMP-dependent Kinase (AMPK)-Mammalian Target of Rapamycin (mTOR) Signaling, and Inhibits Proliferation of HepG2 Hepatocarcinoma Cells.
    Figarola JL; Singhal J; Tompkins JD; Rogers GW; Warden C; Horne D; Riggs AD; Awasthi S; Singhal SS
    J Biol Chem; 2015 Dec; 290(51):30321-41. PubMed ID: 26534958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyoscyamus albus nortropane alkaloids reduce hyperglycemia and hyperinsulinemia induced in HepG2 cells through the regulation of SIRT1/NF-kB/JNK pathway.
    Kowalczuk A; Bourebaba N; Kornicka-Garbowska K; Turlej E; Marycz K; Bourebaba L
    Cell Commun Signal; 2021 May; 19(1):61. PubMed ID: 34034759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-acetyl cysteine attenuates oxidative stress and glutathione-dependent redox imbalance caused by high glucose/high palmitic acid treatment in pancreatic Rin-5F cells.
    Alnahdi A; John A; Raza H
    PLoS One; 2019; 14(12):e0226696. PubMed ID: 31860682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SC-III3, a novel scopoletin derivative, induces autophagy of human hepatoma HepG2 cells through AMPK/mTOR signaling pathway by acting on mitochondria.
    Zhao P; Dou Y; Chen L; Li L; Wei Z; Yu J; Wu X; Dai Y; Xia Y
    Fitoterapia; 2015 Jul; 104():31-40. PubMed ID: 25964188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chalcone compound isosalipurposide (ISPP) exerts a cytoprotective effect against oxidative injury via Nrf2 activation.
    Han JY; Cho SS; Yang JH; Kim KM; Jang CH; Park DE; Bang JS; Jung YS; Ki SH
    Toxicol Appl Pharmacol; 2015 Aug; 287(1):77-85. PubMed ID: 26028482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salinomycin ameliorates oxidative hepatic damage through AMP-activated protein kinase, facilitating autophagy.
    Kim KY; Lee SG; Baek SY; Lee EH; Jang EJ; Lee JH; Ahn SC; Chang JH; Oh TW; Kim SH; Ma JY; Kim SC; Park KI; Kim YW
    Toxicol Appl Pharmacol; 2018 Dec; 360():141-149. PubMed ID: 30290169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytoprotective effect of kaempferol against palmitic acid-induced pancreatic β-cell death through modulation of autophagy via AMPK/mTOR signaling pathway.
    Varshney R; Gupta S; Roy P
    Mol Cell Endocrinol; 2017 Jun; 448():1-20. PubMed ID: 28237721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural Cyclopeptide RA-XII, a New Autophagy Inhibitor, Suppresses Protective Autophagy for Enhancing Apoptosis through AMPK/mTOR/P70S6K Pathways in HepG2 Cells.
    Song L; Wang Z; Wang Y; Guo D; Yang J; Chen L; Tan N
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29137114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AMPK activation by liquiritigenin inhibited oxidative hepatic injury and mitochondrial dysfunction induced by nutrition deprivation as mediated with induction of farnesoid X receptor.
    Jung EH; Lee JH; Kim SC; Kim YW
    Eur J Nutr; 2017 Mar; 56(2):635-647. PubMed ID: 26646674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Moutan Cortex Protects Hepatocytes against Oxidative Injury through AMP-Activated Protein Kinase Pathway.
    Jang MH; Kim KY; Song PH; Baek SY; Seo HL; Lee EH; Lee SG; Park KI; Ahn SC; Kim SC; Kim YW
    Biol Pharm Bull; 2017; 40(6):797-806. PubMed ID: 28566623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain.
    Jiang J; Briedé JJ; Jennen DG; Van Summeren A; Saritas-Brauers K; Schaart G; Kleinjans JC; de Kok TM
    Toxicol Lett; 2015 Apr; 234(2):139-50. PubMed ID: 25704631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High glucose induces inflammatory responses in HepG2 cells via the oxidative stress-mediated activation of NF-κB, and MAPK pathways in HepG2 cells.
    Panahi G; Pasalar P; Zare M; Rizzuto R; Meshkani R
    Arch Physiol Biochem; 2018 Dec; 124(5):468-474. PubMed ID: 29364751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.