These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 31443620)
21. Rheology and texture analysis of gelatin/dialdehyde starch hydrogel carriers for curcumin controlled release. Cui T; Wu Y; Ni C; Sun Y; Cheng J Carbohydr Polym; 2022 May; 283():119154. PubMed ID: 35153020 [TBL] [Abstract][Full Text] [Related]
22. Self-cross-linked starch/chitosan hydrogel as a biocompatible vehicle for controlled release of drug. Sarmah D; Rather MA; Sarkar A; Mandal M; Sankaranarayanan K; Karak N Int J Biol Macromol; 2023 May; 237():124206. PubMed ID: 36990413 [TBL] [Abstract][Full Text] [Related]
23. Textural and cargo release attributes of trisodium citrate cross-linked starch hydrogel. Abhari N; Madadlou A; Dini A; Hosseini Naveh O Food Chem; 2017 Jan; 214():16-24. PubMed ID: 27507442 [TBL] [Abstract][Full Text] [Related]
24. Hydrogels based on the chemically crosslinked polyacrylic acid: biopharmaceutical characterization. Dimitrov M; Lambov N; Shenkov S; Dosseva V; Baranovski VY Acta Pharm; 2003 Mar; 53(1):25-31. PubMed ID: 14769249 [TBL] [Abstract][Full Text] [Related]
25. Dynamic Tannic Acid Hydrogel with Self-Healing and pH Sensitivity for Controlled Release. Li P; Sui Y; Dai X; Fang Q; Sima H; Zhang C Macromol Biosci; 2021 Jun; 21(6):e2100055. PubMed ID: 33876558 [TBL] [Abstract][Full Text] [Related]
26. Chitosan based thermosensitive injectable hydrogels for controlled delivery of loxoprofen: development, characterization and in-vivo evaluation. Ahmad U; Sohail M; Ahmad M; Minhas MU; Khan S; Hussain Z; Kousar M; Mohsin S; Abbasi M; Shah SA; Rashid H Int J Biol Macromol; 2019 May; 129():233-245. PubMed ID: 30738157 [TBL] [Abstract][Full Text] [Related]
27. NMR imaging of chitosan and carboxymethyl starch tablets: swelling and hydration of the polyelectrolyte complex. Wang YJ; Assaad E; Ispas-Szabo P; Mateescu MA; Zhu XX Int J Pharm; 2011 Oct; 419(1-2):215-21. PubMed ID: 21864660 [TBL] [Abstract][Full Text] [Related]
28. [The drug release properties of poly (acrylamide-co-itaconate-vinylbenzylglycosylallylamide) hydrogels]. Xi Y; Li L; Tan Y; Xu Z; Li Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Jun; 24(3):603-6. PubMed ID: 17713271 [TBL] [Abstract][Full Text] [Related]
29. Allylated chitosan-poly(N-isopropylacrylamide) hydrogel based on a functionalized double network for controlled drug release. Xu S; Li H; Ding H; Fan Z; Pi P; Cheng J; Wen X Carbohydr Polym; 2019 Jun; 214():8-14. PubMed ID: 30926010 [TBL] [Abstract][Full Text] [Related]
30. Karaya gum-graft-poly(2-(dimethylamino)ethyl methacrylate) gel: An efficient adsorbent for removal of ionic dyes from water. Bidarakatte Krishnappa P; Badalamoole V Int J Biol Macromol; 2019 Feb; 122():997-1007. PubMed ID: 30201563 [TBL] [Abstract][Full Text] [Related]
31. Modification of sterculia gum polysaccharide via network formation by radiation induced crosslinking polymerization for biomedical applications. Singh B; Singh B Int J Biol Macromol; 2018 Sep; 116():91-99. PubMed ID: 29746967 [TBL] [Abstract][Full Text] [Related]
32. Genipin-crosslinked casein hydrogels for controlled drug delivery. Song F; Zhang LM; Yang C; Yan L Int J Pharm; 2009 May; 373(1-2):41-7. PubMed ID: 19429286 [TBL] [Abstract][Full Text] [Related]
33. Microwave-Assisted Synthesis, Characterization and Modeling of CPO-27-Mg Metal-Organic Framework for Drug Delivery. Kudelin AI; Papathanasiou K; Isaeva V; Caro J; Salmi T; Kustov LM Molecules; 2021 Jan; 26(2):. PubMed ID: 33467467 [TBL] [Abstract][Full Text] [Related]
34. Modification of sterculia gum with methacrylic acid to prepare a novel drug delivery system. Singh B; Sharma N Int J Biol Macromol; 2008 Aug; 43(2):142-50. PubMed ID: 18501422 [TBL] [Abstract][Full Text] [Related]
35. Synthesis of chemically cross-linked hydroxypropyl methyl cellulose hydrogels and their application in controlled release of 5-amino salicylic acid. Davaran S; Rashidi MR; Khani A Drug Dev Ind Pharm; 2007 Aug; 33(8):881-7. PubMed ID: 17729106 [TBL] [Abstract][Full Text] [Related]
36. Magnetic/pH-responsive beads based on caboxymethyl chitosan and κ-carrageenan and controlled drug release. Mahdavinia GR; Etemadi H; Soleymani F Carbohydr Polym; 2015 Sep; 128():112-21. PubMed ID: 26005146 [TBL] [Abstract][Full Text] [Related]
37. Chitosan oligosaccharide as prospective cross-linking agent for naproxen-loaded Ca-alginate microparticles with improved pH sensitivity. Čalija B; Milić J; Cekić N; Krajišnik D; Daniels R; Savić S Drug Dev Ind Pharm; 2013 Jan; 39(1):77-88. PubMed ID: 22339172 [TBL] [Abstract][Full Text] [Related]
38. pH-responsive hybrid hydrogels: Chondroitin sulfate/casein trapped silica nanospheres for controlled drug release. Simão AR; Fragal VH; Lima AMO; Pellá MCG; Garcia FP; Nakamura CV; Tambourgi EB; Rubira AF Int J Biol Macromol; 2020 Apr; 148():302-315. PubMed ID: 31931066 [TBL] [Abstract][Full Text] [Related]
39. Drug release from spray layered and coated drug-containing beads: effects of pH and comparison of different dissolution methods. Sorasuchart W; Wardrop J; Ayres JW Drug Dev Ind Pharm; 1999 Oct; 25(10):1093-8. PubMed ID: 10529889 [TBL] [Abstract][Full Text] [Related]
40. Starch functionalized biodegradable semi-IPN as a pH-tunable controlled release platform for memantine. Ganguly S; Maity T; Mondal S; Das P; Das NC Int J Biol Macromol; 2017 Feb; 95():185-198. PubMed ID: 27865957 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]