BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 31443706)

  • 1. Using artificial intelligence to reduce diagnostic workload without compromising detection of urinary tract infections.
    Burton RJ; Albur M; Eberl M; Cuff SM
    BMC Med Inform Decis Mak; 2019 Aug; 19(1):171. PubMed ID: 31443706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diagnosis of urinary tract infection based on artificial intelligence methods.
    Ozkan IA; Koklu M; Sert IU
    Comput Methods Programs Biomed; 2018 Nov; 166():51-59. PubMed ID: 30415718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sysmex UF-1000i flow cytometer to screen urinary tract infections: the URISCAM multicentre study.
    Herráez O; Asencio MA; Carranza R; Jarabo MM; Huertas M; Redondo O; Arias-Arias A; Jiménez-Álvarez S; Solís S; Zamarrón P; Illescas MS; Galán MA
    Lett Appl Microbiol; 2018 Mar; 66(3):175-181. PubMed ID: 29223137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting urinary tract infections in the emergency department with machine learning.
    Taylor RA; Moore CL; Cheung KH; Brandt C
    PLoS One; 2018; 13(3):e0194085. PubMed ID: 29513742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytic performance of bacteriuria and leukocyturia obtained by UriSed in culture positive urinary tract infections.
    Karakukcu C; Kayman T; Ozturk A; Torun YA
    Clin Lab; 2012; 58(1-2):107-11. PubMed ID: 22372352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the costs for the laboratory of flow cytometry screening of urine samples before culture.
    Paattiniemi EL; Karumaa S; Viita AM; Kärpänoja P; Mäkelä M; Isojärvi J; Sarkkinen H
    Infect Dis (Lond); 2017 Mar; 49(3):217-222. PubMed ID: 27766919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can urine dipstick testing for urinary tract infection at point of care reduce laboratory workload?
    Patel HD; Livsey SA; Swann RA; Bukhari SS
    J Clin Pathol; 2005 Sep; 58(9):951-4. PubMed ID: 16126876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cost-effectiveness of a new system in ruling out negative urine cultures on the day of administration.
    Ilki A; Ayas R; Ozsoy S; Soyletir G
    Eur J Clin Microbiol Infect Dis; 2017 Jul; 36(7):1119-1123. PubMed ID: 28111725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can routine automated urinalysis reduce culture requests?
    Kayalp D; Dogan K; Ceylan G; Senes M; Yucel D
    Clin Biochem; 2013 Sep; 46(13-14):1285-9. PubMed ID: 23810583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening urine samples for the absence of urinary tract infection using the sediMAX automated microscopy analyser.
    Sterry-Blunt RE; S Randall K; J Doughton M; H Aliyu S; A Enoch D
    J Med Microbiol; 2015 Jun; 64(6):605-609. PubMed ID: 25855757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and validation of artificial intelligence models to predict urinary tract infections and secondary bloodstream infections in adult patients.
    Choi MH; Kim D; Park Y; Jeong SH
    J Infect Public Health; 2024 Jan; 17(1):10-17. PubMed ID: 37988812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the Sysmex UF1000i flow cytometer for ruling out bacterial urinary tract infection.
    De Rosa R; Grosso S; Bruschetta G; Avolio M; Stano P; Modolo ML; Camporese A
    Clin Chim Acta; 2010 Aug; 411(15-16):1137-42. PubMed ID: 20359474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning Prediction of Urine Cultures in Primary Care.
    Parente D; Shanks D; Yedlinksy N; Hake J; Dhanda G
    Ann Fam Med; 2023 Jan; 21(21 Suppl 1):. PubMed ID: 36972528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Importance of Urine Concentration on the Diagnostic Performance of the Urinalysis for Pediatric Urinary Tract Infection.
    Chaudhari PP; Monuteaux MC; Shah P; Bachur RG
    Ann Emerg Med; 2017 Jul; 70(1):63-71.e8. PubMed ID: 28169050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning models predicting multidrug resistant urinary tract infections using "DsaaS".
    Mancini A; Vito L; Marcelli E; Piangerelli M; De Leone R; Pucciarelli S; Merelli E
    BMC Bioinformatics; 2020 Aug; 21(Suppl 10):347. PubMed ID: 32838752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy Efficiency of Inference Algorithms for Clinical Laboratory Data Sets: Green Artificial Intelligence Study.
    Yu JR; Chen CH; Huang TW; Lu JJ; Chung CR; Lin TW; Wu MH; Tseng YJ; Wang HY
    J Med Internet Res; 2022 Jan; 24(1):e28036. PubMed ID: 35076405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The prevalence of urinary tract infections and sexually transmitted disease in women with symptoms of a simple urinary tract infection stratified by low colony count criteria.
    Shapiro T; Dalton M; Hammock J; Lavery R; Matjucha J; Salo DF
    Acad Emerg Med; 2005 Jan; 12(1):38-44. PubMed ID: 15635136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diagnostic Accuracy of a New Urinalysis System, DongJiu, for Diagnosis of Urinary Tract Infection.
    Kocer D; Sariguzel FM; Ciraci MZ; Karakukcu C; Oz L
    Ann Clin Lab Sci; 2015; 45(6):686-91. PubMed ID: 26663800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening of presumptive urinary tract infections by the automated urine sediment analyser sediMAX.
    Tessari A; Osti N; Scarin M
    Clin Chem Lab Med; 2015 Nov; 53 Suppl 2():s1503-8. PubMed ID: 26509783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diagnosis of urinary tract infection in children: fresh urine microscopy or culture?
    Vickers D; Ahmad T; Coulthard MG
    Lancet; 1991 Sep; 338(8770):767-70. PubMed ID: 1681158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.