BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31443755)

  • 1. A hypothesis regarding how sleep can calibrate neuronal excitability in the central nervous system and thereby offer stability, sensitivity and the best possible cognitive function.
    Hansson JHS
    Med Hypotheses; 2019 Oct; 131():109307. PubMed ID: 31443755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Avian sleep homeostasis: convergent evolution of complex brains, cognition and sleep functions in mammals and birds.
    Rattenborg NC; Martinez-Gonzalez D; Lesku JA
    Neurosci Biobehav Rev; 2009 Mar; 33(3):253-70. PubMed ID: 18789355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Memory, sleep and the evolution of mechanisms of synaptic efficacy maintenance.
    Kavanau JL
    Neuroscience; 1997 Jul; 79(1):7-44. PubMed ID: 9178863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noradrenergic neurons of the locus coeruleus are phase locked to cortical up-down states during sleep.
    Eschenko O; Magri C; Panzeri S; Sara SJ
    Cereb Cortex; 2012 Feb; 22(2):426-35. PubMed ID: 21670101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sleep-Dependent Potentiation in the Visual System Is at Odds with the Synaptic Homeostasis Hypothesis.
    Durkin J; Aton SJ
    Sleep; 2016 Jan; 39(1):155-9. PubMed ID: 26285006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow-wave sleep: serotonin, neuronal plasticity, and seizures.
    Steriade M
    Arch Ital Biol; 2004 Jul; 142(4):359-67. PubMed ID: 15493541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neocortical focus: experimental view.
    Timofeev I; Chauvette S; Soltani S
    Int Rev Neurobiol; 2014; 114():9-33. PubMed ID: 25078497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The sleep slow oscillation as a traveling wave.
    Massimini M; Huber R; Ferrarelli F; Hill S; Tononi G
    J Neurosci; 2004 Aug; 24(31):6862-70. PubMed ID: 15295020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep.
    Rodriguez AV; Funk CM; Vyazovskiy VV; Nir Y; Tononi G; Cirelli C
    J Neurosci; 2016 Dec; 36(49):12436-12447. PubMed ID: 27927960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epileptic interictal discharges are more frequent during NREM slow wave downstates.
    Ujma PP; Halász P; Kelemen A; Fabó D; Erőss L
    Neurosci Lett; 2017 Sep; 658():37-42. PubMed ID: 28811195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New class of reduced computationally efficient neuronal models for large-scale simulations of brain dynamics.
    Komarov M; Krishnan G; Chauvette S; Rulkov N; Timofeev I; Bazhenov M
    J Comput Neurosci; 2018 Feb; 44(1):1-24. PubMed ID: 29230640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic potentiation and sleep need: clues from molecular and electrophysiological studies.
    Hanlon EC; Vyazovskiy VV; Faraguna U; Tononi G; Cirelli C
    Curr Top Med Chem; 2011; 11(19):2472-82. PubMed ID: 21906017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks.
    Steriade M; Contreras D; Curró Dossi R; Nuñez A
    J Neurosci; 1993 Aug; 13(8):3284-99. PubMed ID: 8340808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereotypical spatiotemporal activity patterns during slow-wave activity in the neocortex.
    Fucke T; Suchanek D; Nawrot MP; Seamari Y; Heck DH; Aertsen A; Boucsein C
    J Neurophysiol; 2011 Dec; 106(6):3035-44. PubMed ID: 21849616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation.
    Miyamoto D; Hirai D; Murayama M
    Front Neural Circuits; 2017; 11():92. PubMed ID: 29213231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auditory closed-loop stimulation of the sleep slow oscillation enhances memory.
    Ngo HV; Martinetz T; Born J; Mölle M
    Neuron; 2013 May; 78(3):545-53. PubMed ID: 23583623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The activity of thalamus and cerebral cortex neurons in rabbits during "slow wave-spindle" EEG complexes.
    Burikov AA; Bereshpolova YuI
    Neurosci Behav Physiol; 1999; 29(2):143-9. PubMed ID: 10432501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of γ and spindle-range power by slow oscillations in scalp sleep EEG of children.
    Piantoni G; Astill RG; Raymann RJ; Vis JC; Coppens JE; Van Someren EJ
    Int J Psychophysiol; 2013 Aug; 89(2):252-8. PubMed ID: 23403325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling sleep and wakefulness in the thalamocortical system.
    Hill S; Tononi G
    J Neurophysiol; 2005 Mar; 93(3):1671-98. PubMed ID: 15537811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective neuronal lapses precede human cognitive lapses following sleep deprivation.
    Nir Y; Andrillon T; Marmelshtein A; Suthana N; Cirelli C; Tononi G; Fried I
    Nat Med; 2017 Dec; 23(12):1474-1480. PubMed ID: 29106402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.